Thermovibrational low-mode model of convection in a horizontal layer with longitudinal vibrations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 158-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Thermovibrational convection in a horizontal layer of fluid between isothermal solid boundaries heated to different temperatures in the presence of longitudinal vibrations is considered in this paper. Stability and supercritical bifurcation of convection is investigated in a low-mode approximation. Bifurcation diagrams of supercritical modes are analytically obtained in the area of stability of supercritical convection. The analysis of diagrams shows that vibrations can lead to the rigid type of the occurrence of convection when upper boundary is heated. In addition, the hysteresis between stationary states is observed. The size of hysteresis interval of the Rayleigh numbers increases with the growth of the Gershuni number. A numerical study of the linear stability of the supercritical vibration-convective flows in the interval of Prandtl numbers $1 \leqslant \mathrm{Pr} \leqslant 10$ is conducted in the context of the proposed model. The region of flow stability decreases with increasing the Prandtl number. For any value of the Prandtl number from the given interval drastic excitation of stationary vibrational convection with hysteresis is possible.
Keywords: thermovibrational convection, low-mode model, flat layer, hysteresis.
Mots-clés : hard excitation
@article{JSFU_2017_10_2_a2,
     author = {Vadim A. Sharifulin},
     title = {Thermovibrational low-mode model of convection in a horizontal layer with longitudinal vibrations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {158--169},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a2/}
}
TY  - JOUR
AU  - Vadim A. Sharifulin
TI  - Thermovibrational low-mode model of convection in a horizontal layer with longitudinal vibrations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 158
EP  - 169
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a2/
LA  - en
ID  - JSFU_2017_10_2_a2
ER  - 
%0 Journal Article
%A Vadim A. Sharifulin
%T Thermovibrational low-mode model of convection in a horizontal layer with longitudinal vibrations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 158-169
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a2/
%G en
%F JSFU_2017_10_2_a2
Vadim A. Sharifulin. Thermovibrational low-mode model of convection in a horizontal layer with longitudinal vibrations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 158-169. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a2/

[1] G. Z. Gershuni, E. M. Zhuhovitskii, Convective stability of incompressible fluids, Israel Program for Scientific Translations, Jerusalem, 1976

[2] A. V. Getling, Reylaigh-Benare Convection: Structures and Dynamics, World Scientific, 1998 | MR

[3] V. K. Andreev, V. B. Bekezhanova, “Stability of non-isothermal fluids”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 171 | DOI | MR | Zbl

[4] A. N. Sharifulin, Supercritical vibro-thermal heat transfer in plane layer of flued in non-gravity. Methods of aerodynamics and heat mass transfer in technological prosseses, Tomskij Gos. Univ., Tomsk, 1984 (in Russian)

[5] G. Z. Gershuni, D. V. Luybimov, Thermal vibrational convection, Wiley Sons, 1998

[6] I. I. Ryzhkov, “On the Boussinesq Approximation in the Problems of Convection Induced by High-Frequency Vibration”, Journal of Siberian Federal Univerity. Mathematics Physics, 3:4 (2010), 433

[7] V. Shevtsova, I. I. Ryzhkov, D. E. Melnikov, Y. A. Gaponenko, A. Mialdun, “Experimental and theoretical study of vibration-induced thermal convection in low gravity”, J. Fluid Mech., 648 (2010), 53 | DOI | MR | Zbl

[8] M. P. Zavaryikin, I. I. Zorin, G. F. Putin, “Conserning thermal convectional instability in vibrational field”, Dokl. AN SSSR, 303 (1988), 309

[9] E. N. Lorenz, “Deterministic nonperiodic flow”, Journal of the atmospheric sciences, 20 (1963), 130 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] D. V. Lyubimov, M. A. Zaks, “Two mecanism of the transition to chaos in finite-dimension models of convection”, Physics D, 9 (1983), 52 | DOI | MR | Zbl

[11] A. I. Nikitin, A. N. Sharifulin, “Concerning the bifurcations of steady-state thermal convection regimes in a closed cavity due to the Whitney folding-type singularity”, Heat Transfer. Soviet Research, 21:2 (1989), 213 | MR