Embedding theorems for functional spaces associated with a class of Hermitian forms
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 83-95

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove embedding theorems into the scale of Sobolev–Slobodetskii spaces for functional spaces associated with a class of Hermitian forms. More precisely we consider the Hermitian forms constructed with the use of the first order differential matrix operators with injective principal symbol. The results are valid for both coercive and non-coercive forms.
Keywords: non-coercive Hermitian forms, embedding theorems, matrix elliptic operators.
@article{JSFU_2017_10_1_a12,
     author = {Anastasiya S. Peicheva},
     title = {Embedding theorems for functional spaces associated with a class of {Hermitian} forms},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a12/}
}
TY  - JOUR
AU  - Anastasiya S. Peicheva
TI  - Embedding theorems for functional spaces associated with a class of Hermitian forms
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 83
EP  - 95
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a12/
LA  - en
ID  - JSFU_2017_10_1_a12
ER  - 
%0 Journal Article
%A Anastasiya S. Peicheva
%T Embedding theorems for functional spaces associated with a class of Hermitian forms
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 83-95
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a12/
%G en
%F JSFU_2017_10_1_a12
Anastasiya S. Peicheva. Embedding theorems for functional spaces associated with a class of Hermitian forms. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 83-95. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a12/