Improving the accuracy of the probability density function estimation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the new approach to the reconstruction of the probability density function similarly the averaged shifted histogram method. An algorithm is used Richardson's extrapolation for increasing accuracy. We prove the estimates of the accuracy of the probability density function and its second derivative to choose the optimal settings for smoothing the histogram and kernel estimators and to consider the optimal choice problem of the bandwidth parameter. Presented the results of numerical experiments.
Keywords: error estimate, Richardson's extrapolation, Runge's rule, probability density functions estimation, probability density function derivatives, Numerical probabilistic analysis.
Mots-clés : MISE
@article{JSFU_2017_10_1_a1,
     author = {Boris S. Dobronets and Olga A. Popova},
     title = {Improving the accuracy of the probability density function estimation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {16--21},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a1/}
}
TY  - JOUR
AU  - Boris S. Dobronets
AU  - Olga A. Popova
TI  - Improving the accuracy of the probability density function estimation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 16
EP  - 21
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a1/
LA  - en
ID  - JSFU_2017_10_1_a1
ER  - 
%0 Journal Article
%A Boris S. Dobronets
%A Olga A. Popova
%T Improving the accuracy of the probability density function estimation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 16-21
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a1/
%G en
%F JSFU_2017_10_1_a1
Boris S. Dobronets; Olga A. Popova. Improving the accuracy of the probability density function estimation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 16-21. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a1/

[1] B. S. Dobronets, O. A. Popova, “Numerical probabilistic analysis under aleatory and epistemic uncertainty”, Reliable Computing, 19 (2014), 274–289 | MR

[2] B. Dobronets, O. Popova, “Numerical Probabilistic Approach for Optimization Problems”, Scientific Computing, Computer Arithmetic and Validated Numerics, Lecture Notes in Computer Science, 9553, Springer International Publishing, Cham, 2016, 43–53 | DOI | MR | Zbl

[3] B. Dobronets, O. Popova, Numerical probabilistic analysis of uncertain data, Siberian Federal University, Institute of Space and Information Technologies, Krasnoyarsk, 2014 (in Russian)

[4] O. Popova, “Information approach to a posteriori error estimates of numerical modeling”, Informatization and Communication, 2 (2016), 29–32

[5] R. W. Scott, Multivariate density estimation: theory, practice, and visualization, John Wiley Sons, New York, 2015 | MR | Zbl

[6] B. S. Dobronets, V. V. Shaidurov, Two-sided Numerical Methods, Nauka, Novosibirsk, 1990 (in Russian) | Zbl

[7] G. I. Marchuk, V. V. Shaidurov, Difference methods and their extrapolations, Springer-Verlag, New York, 1983 | MR | Zbl

[8] F. P. Tarasenko, Nonparametrics, TSU, Tomsk, 1976

[9] S. P. Shary, Interval analysis or Monte-Carlo methods?, Vycislitel'nye tehnologii, 12:1 (2007), 103–112 (in Russian)