Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_1_a0, author = {Anna Sh. Lyubanova}, title = {The inverse problem for the nonlinear pseudoparabolic equation of filtration type}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {4--15}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/} }
TY - JOUR AU - Anna Sh. Lyubanova TI - The inverse problem for the nonlinear pseudoparabolic equation of filtration type JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 4 EP - 15 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/ LA - en ID - JSFU_2017_10_1_a0 ER -
%0 Journal Article %A Anna Sh. Lyubanova %T The inverse problem for the nonlinear pseudoparabolic equation of filtration type %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 4-15 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/ %G en %F JSFU_2017_10_1_a0
Anna Sh. Lyubanova. The inverse problem for the nonlinear pseudoparabolic equation of filtration type. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 4-15. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/
[1] G. I. Barenblatt, Iu. P. Zheltov, I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured blocks [strata]”, J. Appl. Math. Mech., 24 (1960), 1286–1303 (in Russian) | DOI | Zbl
[2] M. Bohm, R. E. Showalter, “Diffusion in Fissured Media”, SIAM J. of Mathematical Anal., 16 (1985), 500–509 | DOI | MR | Zbl
[3] H. Gajewski, K. Gröger, K. Zacharias, Nichtlinear Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, 38, Akademie-Verlag, Berlin, 1974 | MR
[4] A. I. Kozhanov, “On the solvability of the coefficient inverse problems for equations of Sobolev type”, Nauchniye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya “Matematika. Phizika”, 5 (2010), 88–98 (in Russian)
[5] J.-L. Lions, E. Magenes, Problemes aux Limites Non Homogenes et Applications, v. 1, Travaux et Recherches Mathematiques, 17, Dunod, Paris, 1968 | MR
[6] A. Sh. Lyubanova, “On an inverse problem for quasi-linear elliptic equation”, Journal of Siberian Federal University. Mathematics and Physics, 8 (2015), 38–48 | DOI | MR
[7] A. Sh. Lyubanova, A. Tani, “An inverse problem for pseudoparabolic equation of filtration. The existence, uniqueness and regularity”, Appl. Anal., 90 (2011), 1557–1571 | DOI | MR | Zbl
[8] M. Sh. Mamayusupov, “The problem of determining coefficients of a pseudoparabolic equation”, Studies in integro-differential equations, 16, Ilim, Frunze, 1983, 290–297 (in Russian) | MR
[9] W. Rundell, “Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data”, Appl. Anal., 10 (1980), 231–242 | DOI | MR | Zbl
[10] R. E. Showalter, T. W. Ting, “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1 (1970), 1–26 | DOI | MR | Zbl
[11] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Linear and nonlinear equations of the Sobolev type, Physmatlit, M., 2007 (in Russian)