The inverse problem for the nonlinear pseudoparabolic equation of filtration type
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 4-15

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the correctness of the inverse problem on finding an unknown coefficient dependent on $t$ in the nonlinear pseudoparabolic equation of the third order with an additional information on the boundary. The existence and uniqueness theorem is proven. The proof of the theorem is carried out by the reduction of the original inverse problem to the equivalent one with an operator equation for the unknown coefficient.
Keywords: local existence and uniqueness theorem, a priori estimate, inverse problem, nonlinear higher-order equation
Mots-clés : pseudoparabolic equation, filtration.
@article{JSFU_2017_10_1_a0,
     author = {Anna Sh. Lyubanova},
     title = {The inverse problem for the nonlinear pseudoparabolic equation of filtration type},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {4--15},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/}
}
TY  - JOUR
AU  - Anna Sh. Lyubanova
TI  - The inverse problem for the nonlinear pseudoparabolic equation of filtration type
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 4
EP  - 15
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/
LA  - en
ID  - JSFU_2017_10_1_a0
ER  - 
%0 Journal Article
%A Anna Sh. Lyubanova
%T The inverse problem for the nonlinear pseudoparabolic equation of filtration type
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 4-15
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/
%G en
%F JSFU_2017_10_1_a0
Anna Sh. Lyubanova. The inverse problem for the nonlinear pseudoparabolic equation of filtration type. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 4-15. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/