The inverse problem for the nonlinear pseudoparabolic equation of filtration type
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 4-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the correctness of the inverse problem on finding an unknown coefficient dependent on $t$ in the nonlinear pseudoparabolic equation of the third order with an additional information on the boundary. The existence and uniqueness theorem is proven. The proof of the theorem is carried out by the reduction of the original inverse problem to the equivalent one with an operator equation for the unknown coefficient.
Keywords: local existence and uniqueness theorem, a priori estimate, inverse problem, nonlinear higher-order equation
Mots-clés : pseudoparabolic equation, filtration.
@article{JSFU_2017_10_1_a0,
     author = {Anna Sh. Lyubanova},
     title = {The inverse problem for the nonlinear pseudoparabolic equation of filtration type},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {4--15},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/}
}
TY  - JOUR
AU  - Anna Sh. Lyubanova
TI  - The inverse problem for the nonlinear pseudoparabolic equation of filtration type
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 4
EP  - 15
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/
LA  - en
ID  - JSFU_2017_10_1_a0
ER  - 
%0 Journal Article
%A Anna Sh. Lyubanova
%T The inverse problem for the nonlinear pseudoparabolic equation of filtration type
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 4-15
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/
%G en
%F JSFU_2017_10_1_a0
Anna Sh. Lyubanova. The inverse problem for the nonlinear pseudoparabolic equation of filtration type. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 1, pp. 4-15. http://geodesic.mathdoc.fr/item/JSFU_2017_10_1_a0/

[1] G. I. Barenblatt, Iu. P. Zheltov, I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured blocks [strata]”, J. Appl. Math. Mech., 24 (1960), 1286–1303 (in Russian) | DOI | Zbl

[2] M. Bohm, R. E. Showalter, “Diffusion in Fissured Media”, SIAM J. of Mathematical Anal., 16 (1985), 500–509 | DOI | MR | Zbl

[3] H. Gajewski, K. Gröger, K. Zacharias, Nichtlinear Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, 38, Akademie-Verlag, Berlin, 1974 | MR

[4] A. I. Kozhanov, “On the solvability of the coefficient inverse problems for equations of Sobolev type”, Nauchniye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya “Matematika. Phizika”, 5 (2010), 88–98 (in Russian)

[5] J.-L. Lions, E. Magenes, Problemes aux Limites Non Homogenes et Applications, v. 1, Travaux et Recherches Mathematiques, 17, Dunod, Paris, 1968 | MR

[6] A. Sh. Lyubanova, “On an inverse problem for quasi-linear elliptic equation”, Journal of Siberian Federal University. Mathematics and Physics, 8 (2015), 38–48 | DOI | MR

[7] A. Sh. Lyubanova, A. Tani, “An inverse problem for pseudoparabolic equation of filtration. The existence, uniqueness and regularity”, Appl. Anal., 90 (2011), 1557–1571 | DOI | MR | Zbl

[8] M. Sh. Mamayusupov, “The problem of determining coefficients of a pseudoparabolic equation”, Studies in integro-differential equations, 16, Ilim, Frunze, 1983, 290–297 (in Russian) | MR

[9] W. Rundell, “Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data”, Appl. Anal., 10 (1980), 231–242 | DOI | MR | Zbl

[10] R. E. Showalter, T. W. Ting, “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1 (1970), 1–26 | DOI | MR | Zbl

[11] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Linear and nonlinear equations of the Sobolev type, Physmatlit, M., 2007 (in Russian)