@article{JSFU_2016_9_4_a2,
author = {Yulia L. Cherepanova and Alexander A. Shlapunov},
title = {On an analogue of the {Riemann{\textendash}Hilbert} problem for a non-linear perturbation of the {Cauchy{\textendash}Riemann} operator},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {427--431},
year = {2016},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a2/}
}
TY - JOUR AU - Yulia L. Cherepanova AU - Alexander A. Shlapunov TI - On an analogue of the Riemann–Hilbert problem for a non-linear perturbation of the Cauchy–Riemann operator JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 427 EP - 431 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a2/ LA - en ID - JSFU_2016_9_4_a2 ER -
%0 Journal Article %A Yulia L. Cherepanova %A Alexander A. Shlapunov %T On an analogue of the Riemann–Hilbert problem for a non-linear perturbation of the Cauchy–Riemann operator %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 427-431 %V 9 %N 4 %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a2/ %G en %F JSFU_2016_9_4_a2
Yulia L. Cherepanova; Alexander A. Shlapunov. On an analogue of the Riemann–Hilbert problem for a non-linear perturbation of the Cauchy–Riemann operator. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 427-431. http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a2/
[1] F. D. Gakhov, Boundary Value Problems, Nauka, M., 1977 (in Russian) | MR | Zbl
[2] E. Wegert, Nonlinear Boundary Value Problems for Holomorphic Functions and Singular Equations, Akademie Verlag, Berlin, 1992 | MR | Zbl
[3] G. Semmler, E. Wegert, “Nonlinear Riemann-Hilbert Problems and Boundary Interpolation”, Computational Methods and Function Theory, 3:1 (2003), 179–199 | DOI | MR | Zbl
[4] A. I. Shnirel'man, “The degree of a quasi-ruled mapping and a nonlinear Hilbert problem”, Math. USSR-Sbornik, 18:3 (1972), 373–396 | DOI
[5] L. V. Wolfersdorf, “A Class of Nonlinear Riemann-Hilbert Problems for Holomorphic Functions”, Mathematische Nachrichten, 116:1 (1984), 89–107 | DOI | MR | Zbl
[6] M. A. Efendiev, W. L. Wendland, “Nonlinear Riemann–Hilbert problems for doubly connected domains and closed boundary data. Topological Methods in Nonlinear Analysis”, J. of the Juliusz Schauder Center, 17 (2001), 111–124 | MR | Zbl
[7] N. M. Gunther, La théorie du potentiel et ses Applications aux problémes fondamentaux de la physique mathématique, Gauthier-Villars, Paris, 1934