On an analogue of the Riemann--Hilbert problem for a non-linear perturbation of the Cauchy--Riemann operator
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 427-431.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a non-linear perturbation of a famous Riemann–Hilbert problem on the recovering of a holomorphic function in a domain via its real part on the boundary. We get an information on the local structure of the solutions and give sufficient conditions for their real analyticity. A simple instructive example is considered.
Keywords: the Cauchy-Riemann operator, non-linear Riemann-Hilbert problem.
@article{JSFU_2016_9_4_a2,
     author = {Yulia L. Cherepanova and Alexander A. Shlapunov},
     title = {On an analogue of the {Riemann--Hilbert} problem for a non-linear perturbation of the {Cauchy--Riemann} operator},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {427--431},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a2/}
}
TY  - JOUR
AU  - Yulia L. Cherepanova
AU  - Alexander A. Shlapunov
TI  - On an analogue of the Riemann--Hilbert problem for a non-linear perturbation of the Cauchy--Riemann operator
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 427
EP  - 431
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a2/
LA  - en
ID  - JSFU_2016_9_4_a2
ER  - 
%0 Journal Article
%A Yulia L. Cherepanova
%A Alexander A. Shlapunov
%T On an analogue of the Riemann--Hilbert problem for a non-linear perturbation of the Cauchy--Riemann operator
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 427-431
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a2/
%G en
%F JSFU_2016_9_4_a2
Yulia L. Cherepanova; Alexander A. Shlapunov. On an analogue of the Riemann--Hilbert problem for a non-linear perturbation of the Cauchy--Riemann operator. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 427-431. http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a2/

[1] F. D. Gakhov, Boundary Value Problems, Nauka, M., 1977 (in Russian) | MR | Zbl

[2] E. Wegert, Nonlinear Boundary Value Problems for Holomorphic Functions and Singular Equations, Akademie Verlag, Berlin, 1992 | MR | Zbl

[3] G. Semmler, E. Wegert, “Nonlinear Riemann-Hilbert Problems and Boundary Interpolation”, Computational Methods and Function Theory, 3:1 (2003), 179–199 | DOI | MR | Zbl

[4] A. I. Shnirel'man, “The degree of a quasi-ruled mapping and a nonlinear Hilbert problem”, Math. USSR-Sbornik, 18:3 (1972), 373–396 | DOI

[5] L. V. Wolfersdorf, “A Class of Nonlinear Riemann-Hilbert Problems for Holomorphic Functions”, Mathematische Nachrichten, 116:1 (1984), 89–107 | DOI | MR | Zbl

[6] M. A. Efendiev, W. L. Wendland, “Nonlinear Riemann–Hilbert problems for doubly connected domains and closed boundary data. Topological Methods in Nonlinear Analysis”, J. of the Juliusz Schauder Center, 17 (2001), 111–124 | MR | Zbl

[7] N. M. Gunther, La théorie du potentiel et ses Applications aux problémes fondamentaux de la physique mathématique, Gauthier-Villars, Paris, 1934