On traces in Hardy type analytic spaces in bounded strictly pseudoconvex domains and in tubular domains over symmetric cones
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 510-517.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide some new estimates on Traces in new mixed norm Hardy type spaces and related new results on Bergman type intergal operators in Hardy type spaces in tubular domains over symmetric cones and bounded striclty pseudoconvex domains with smooth boundary. We generalize a well-known one dimensional result concerning Traces of Hardy spaces obtained previously in the unit disk by various authors.
Keywords: bounded strongly pseudoconvex domain, tubular domains over symmetric cones, Hardy-type spaces.
@article{JSFU_2016_9_4_a14,
     author = {Romi F. Shamoyan and Sergey M. Kurilenko},
     title = {On traces in {Hardy} type analytic spaces in bounded strictly pseudoconvex domains and in tubular domains over symmetric cones},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {510--517},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a14/}
}
TY  - JOUR
AU  - Romi F. Shamoyan
AU  - Sergey M. Kurilenko
TI  - On traces in Hardy type analytic spaces in bounded strictly pseudoconvex domains and in tubular domains over symmetric cones
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 510
EP  - 517
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a14/
LA  - en
ID  - JSFU_2016_9_4_a14
ER  - 
%0 Journal Article
%A Romi F. Shamoyan
%A Sergey M. Kurilenko
%T On traces in Hardy type analytic spaces in bounded strictly pseudoconvex domains and in tubular domains over symmetric cones
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 510-517
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a14/
%G en
%F JSFU_2016_9_4_a14
Romi F. Shamoyan; Sergey M. Kurilenko. On traces in Hardy type analytic spaces in bounded strictly pseudoconvex domains and in tubular domains over symmetric cones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 510-517. http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a14/

[1] J. Shapiro, “Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces”, Duke Math. J., 43:1 (1976), 187–202 | DOI | MR | Zbl

[2] S. Shvedenko, “Hardy classes and related spaces of analytik functions in the init disk, polydisc and unit ball”, Itogi Nauki i Tekhn. Ser. Mat. Anal., 23, 1985, 3–124 (in Russian) | MR | Zbl

[3] P. L. Duren, A. L. Shields, “Restriction of $H^{p}$ functions on the diagonal of the polydisk”, Duke Math. J., 42 (1975), 751–753 | DOI | MR | Zbl

[4] A. E. Djrbashian, F. A. Shamoian, Topics in theory of $A_{\alpha }^{p}$ classes, Teubner Texte zur. Mathematik, 105, 1988 | MR

[5] R. Shamoyan, S. Kurilenko, “On traces in analytic function spaces in polyballs”, Palestine Journal of Mathematics, 4:2 (2015), 291–293 | MR | Zbl

[6] R. Shamoyan, S. Kurilenko, “On traces of analytic Herz and Bloch type spaces in bounded strictly pseudoconvex domains in $C^n$”, Issues Anal., 4(22):1 (2015), 73–94 | DOI | MR | Zbl

[7] R. Shamoyan, O. Mihic, “On traces of holomorphic functions on the unit polyball”, Appl. Anal. Discrete Math., 3 (2009), 198–211 | DOI | MR | Zbl

[8] R. Shamoyan, E. Povprits, “Sharp trace theorems in Bergman type spaces in tubular domains over symmetric cones”, J. Sib. Fed. Univ. Math. Phys., 6:4 (2013), 527–538

[9] S. Krantz, S-Y. Li, “A Note on Hardy spaces and functions of bounded mean oscillation on domains in $\mathbb C^n$”, Michigan Math. J., 41 (1994), 51–71 | DOI | MR | Zbl

[10] S. Krantz, S-Y. Li, “Bloch functions on strongly pseudoconvex domains”, Indiana Math. Univ. J., 37:1 (1988), 145–163 | DOI | MR | Zbl

[11] S. Krantz, S.-Y. Li, “On Decomposition Theorems for Hardy Spaces on Domains in $\mathbb C^n$ and Applications”, Journal of Fourier analysis and applications, 2:1 (1995), 65–108 | DOI | MR

[12] J. Ortega, J. Fabrega, “Hardy's inequality and embeddings in holomorphic Triebel–Lizorkin spaces”, Illinois J. Math., 43 (1999), 733–751 | MR | Zbl

[13] J. Ortega, J. Fabrega, “Pointwise multipliers and corona type decomposition in BMOA”, Ann. Inst. Fourier, 46:1 (1996), 111–137 | DOI | MR | Zbl

[14] M. Andersson, H. Carlsson, “$Q_p$ spaces in strictly pseudoconvex domains”, Journal D"analyse Mathematique, 84 (2001), 335–359 | DOI | MR | Zbl

[15] J. Ortega, J. Fabrega, “Mixed norm spaces and interpolation”, Studia Math., 109 (1994), 233–254 | MR | Zbl

[16] D. Bekolle, A. Bonami, G. Garrigos, C. Nana, M. Peloso, F. Ricci, “Lecture notes on Bergman projectors in tube domain over cones, an analytic and geometric viewpoint”, Proceeding of the International Workshop on Classical Analysis (Yaounde, 2001)

[17] B. F. Sehba, “Bergman type operators in tube domains over symmetric cones”, Proc. Edinburg. Math. Society, 52:2 (2009), 529–544 | DOI | MR | Zbl

[18] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, “Littlewood–Paley decomposition and Besov spaces related to symmetric cones and Bergman Projections in Tube Domains”, Proc. London Math. Soc., 89:2 (2004), 317–360 | DOI | MR | Zbl

[19] B. F. Sehba, “Hankel operators on Bergman Spaces of Tube domains over symmetric cones”, Integr. Equ. Oper. Theory, 2008, 233–245 | DOI | MR | Zbl

[20] E. Amar, C. Menini, “A counterexample to the corona theorem for operator $H^2(D^n)$”, Pacific Journal of Mathematics, 206:2 (2002), 21–29 | DOI | MR

[21] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer Verlag, New York, 2005 | MR | Zbl

[22] R. Shamoyan, O. Mihic, “In search of traces of some holomorphic function spaces in polyballs”, Revista Notas de Matematicas, 1:4 (2008), 1–23 | MR

[23] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, B. Sehba, “Analytic Besov spaces and Hardy type inequalities in tube domains over symmetric cones”, J. fur Reine und Ang., 647 (2010), 25–56 | MR | Zbl

[24] M. Abate, A. Saracco, “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 83 (2011), 587–605 | DOI | MR | Zbl

[25] M. Abate, J. Raissy, A. Saracco, “Toeplitz operators and Carleson measures in strongly pseudoconvex domains”, J. of Functional Analysis, 263:1 (2012), 3449–3491 | DOI | MR | Zbl

[26] B. F. Sehba, C. Nana, “Carleson Embeddings and Two Operators on Bergman Spaces of Tube Domains over Symmetric Cones”, Integral Equations and Operator theory, 83:2 (2015), 151–178 | DOI | MR | Zbl

[27] M. Englis, T. Hannimen, T. Taskinen, “Minimal $L^\infty$ type on strictly pseudoconvex domains on which Bergman projection continious”, Houston J. Math., 32 (2006), 253–275 | MR | Zbl

[28] J. Faraut, A. Koranyi, Analysis on symmetric cones, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994 | MR

[29] S. Yamaji, “On positive Toeplitz operators on the Bergman spaces in minimal bounded homogeneous domians”, Journal of the Mathematical Society of Japan, 65:4 (2013), 1337–1372 | DOI | MR

[30] D. Bekolle, A. Kagou, “Molecular decomposition and interpolation”, Integral equations and operator theory, 31:2 (1998), 150–177 | DOI | MR | Zbl