Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_4_a14, author = {Romi F. Shamoyan and Sergey M. Kurilenko}, title = {On traces in {Hardy} type analytic spaces in bounded strictly pseudoconvex domains and in tubular domains over symmetric cones}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {510--517}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a14/} }
TY - JOUR AU - Romi F. Shamoyan AU - Sergey M. Kurilenko TI - On traces in Hardy type analytic spaces in bounded strictly pseudoconvex domains and in tubular domains over symmetric cones JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 510 EP - 517 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a14/ LA - en ID - JSFU_2016_9_4_a14 ER -
%0 Journal Article %A Romi F. Shamoyan %A Sergey M. Kurilenko %T On traces in Hardy type analytic spaces in bounded strictly pseudoconvex domains and in tubular domains over symmetric cones %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 510-517 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a14/ %G en %F JSFU_2016_9_4_a14
Romi F. Shamoyan; Sergey M. Kurilenko. On traces in Hardy type analytic spaces in bounded strictly pseudoconvex domains and in tubular domains over symmetric cones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 4, pp. 510-517. http://geodesic.mathdoc.fr/item/JSFU_2016_9_4_a14/
[1] J. Shapiro, “Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces”, Duke Math. J., 43:1 (1976), 187–202 | DOI | MR | Zbl
[2] S. Shvedenko, “Hardy classes and related spaces of analytik functions in the init disk, polydisc and unit ball”, Itogi Nauki i Tekhn. Ser. Mat. Anal., 23, 1985, 3–124 (in Russian) | MR | Zbl
[3] P. L. Duren, A. L. Shields, “Restriction of $H^{p}$ functions on the diagonal of the polydisk”, Duke Math. J., 42 (1975), 751–753 | DOI | MR | Zbl
[4] A. E. Djrbashian, F. A. Shamoian, Topics in theory of $A_{\alpha }^{p}$ classes, Teubner Texte zur. Mathematik, 105, 1988 | MR
[5] R. Shamoyan, S. Kurilenko, “On traces in analytic function spaces in polyballs”, Palestine Journal of Mathematics, 4:2 (2015), 291–293 | MR | Zbl
[6] R. Shamoyan, S. Kurilenko, “On traces of analytic Herz and Bloch type spaces in bounded strictly pseudoconvex domains in $C^n$”, Issues Anal., 4(22):1 (2015), 73–94 | DOI | MR | Zbl
[7] R. Shamoyan, O. Mihic, “On traces of holomorphic functions on the unit polyball”, Appl. Anal. Discrete Math., 3 (2009), 198–211 | DOI | MR | Zbl
[8] R. Shamoyan, E. Povprits, “Sharp trace theorems in Bergman type spaces in tubular domains over symmetric cones”, J. Sib. Fed. Univ. Math. Phys., 6:4 (2013), 527–538
[9] S. Krantz, S-Y. Li, “A Note on Hardy spaces and functions of bounded mean oscillation on domains in $\mathbb C^n$”, Michigan Math. J., 41 (1994), 51–71 | DOI | MR | Zbl
[10] S. Krantz, S-Y. Li, “Bloch functions on strongly pseudoconvex domains”, Indiana Math. Univ. J., 37:1 (1988), 145–163 | DOI | MR | Zbl
[11] S. Krantz, S.-Y. Li, “On Decomposition Theorems for Hardy Spaces on Domains in $\mathbb C^n$ and Applications”, Journal of Fourier analysis and applications, 2:1 (1995), 65–108 | DOI | MR
[12] J. Ortega, J. Fabrega, “Hardy's inequality and embeddings in holomorphic Triebel–Lizorkin spaces”, Illinois J. Math., 43 (1999), 733–751 | MR | Zbl
[13] J. Ortega, J. Fabrega, “Pointwise multipliers and corona type decomposition in BMOA”, Ann. Inst. Fourier, 46:1 (1996), 111–137 | DOI | MR | Zbl
[14] M. Andersson, H. Carlsson, “$Q_p$ spaces in strictly pseudoconvex domains”, Journal D"analyse Mathematique, 84 (2001), 335–359 | DOI | MR | Zbl
[15] J. Ortega, J. Fabrega, “Mixed norm spaces and interpolation”, Studia Math., 109 (1994), 233–254 | MR | Zbl
[16] D. Bekolle, A. Bonami, G. Garrigos, C. Nana, M. Peloso, F. Ricci, “Lecture notes on Bergman projectors in tube domain over cones, an analytic and geometric viewpoint”, Proceeding of the International Workshop on Classical Analysis (Yaounde, 2001)
[17] B. F. Sehba, “Bergman type operators in tube domains over symmetric cones”, Proc. Edinburg. Math. Society, 52:2 (2009), 529–544 | DOI | MR | Zbl
[18] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, “Littlewood–Paley decomposition and Besov spaces related to symmetric cones and Bergman Projections in Tube Domains”, Proc. London Math. Soc., 89:2 (2004), 317–360 | DOI | MR | Zbl
[19] B. F. Sehba, “Hankel operators on Bergman Spaces of Tube domains over symmetric cones”, Integr. Equ. Oper. Theory, 2008, 233–245 | DOI | MR | Zbl
[20] E. Amar, C. Menini, “A counterexample to the corona theorem for operator $H^2(D^n)$”, Pacific Journal of Mathematics, 206:2 (2002), 21–29 | DOI | MR
[21] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer Verlag, New York, 2005 | MR | Zbl
[22] R. Shamoyan, O. Mihic, “In search of traces of some holomorphic function spaces in polyballs”, Revista Notas de Matematicas, 1:4 (2008), 1–23 | MR
[23] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, B. Sehba, “Analytic Besov spaces and Hardy type inequalities in tube domains over symmetric cones”, J. fur Reine und Ang., 647 (2010), 25–56 | MR | Zbl
[24] M. Abate, A. Saracco, “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 83 (2011), 587–605 | DOI | MR | Zbl
[25] M. Abate, J. Raissy, A. Saracco, “Toeplitz operators and Carleson measures in strongly pseudoconvex domains”, J. of Functional Analysis, 263:1 (2012), 3449–3491 | DOI | MR | Zbl
[26] B. F. Sehba, C. Nana, “Carleson Embeddings and Two Operators on Bergman Spaces of Tube Domains over Symmetric Cones”, Integral Equations and Operator theory, 83:2 (2015), 151–178 | DOI | MR | Zbl
[27] M. Englis, T. Hannimen, T. Taskinen, “Minimal $L^\infty$ type on strictly pseudoconvex domains on which Bergman projection continious”, Houston J. Math., 32 (2006), 253–275 | MR | Zbl
[28] J. Faraut, A. Koranyi, Analysis on symmetric cones, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994 | MR
[29] S. Yamaji, “On positive Toeplitz operators on the Bergman spaces in minimal bounded homogeneous domians”, Journal of the Mathematical Society of Japan, 65:4 (2013), 1337–1372 | DOI | MR
[30] D. Bekolle, A. Kagou, “Molecular decomposition and interpolation”, Integral equations and operator theory, 31:2 (1998), 150–177 | DOI | MR | Zbl