Mathematical modeling of H-processes
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 338-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the discrete continuous processes having "tubular" structure in space "input-output" variables's modeling is investigated. The fact that when the trained parametrical models of "tubular" processes's creating, it's important to use corresponding nonparametric indicators, is reflected. Some private examples of "tubular" processes's modeling are reviewed. This examples proves that "tubular" processes proceed in the space of fractional dimension.
Keywords: nonparametric model, nonparametric algorithms, H-model
Mots-clés : priori information, identification, fractional dimension space.
@article{JSFU_2016_9_3_a8,
     author = {Alexander V. Medvedev and Eugene D. Mihov and Oleg V. Nepomnyashchiy},
     title = {Mathematical modeling of {H-processes}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {338--346},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a8/}
}
TY  - JOUR
AU  - Alexander V. Medvedev
AU  - Eugene D. Mihov
AU  - Oleg V. Nepomnyashchiy
TI  - Mathematical modeling of H-processes
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 338
EP  - 346
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a8/
LA  - en
ID  - JSFU_2016_9_3_a8
ER  - 
%0 Journal Article
%A Alexander V. Medvedev
%A Eugene D. Mihov
%A Oleg V. Nepomnyashchiy
%T Mathematical modeling of H-processes
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 338-346
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a8/
%G en
%F JSFU_2016_9_3_a8
Alexander V. Medvedev; Eugene D. Mihov; Oleg V. Nepomnyashchiy. Mathematical modeling of H-processes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 338-346. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a8/

[1] Y. L. Fateev, D. D. Dmitriev, V. N. Tyapkin, E. N. Garin, V. V. Shaidurov, “The phase ambiguity resolution in the angle-measuring navigation equipment”, ICAAM (Shymkent, Kazakhstan, 2014), 12–15

[2] A. V. Medvedev, “Analysis of the data in the problem identification”, Computer analysis of simulation data, v. 2, BGU, Minsk, 1995, 201–206 (in Russian)

[3] A. V. Medvedev, “H-model for non-inertia systems with delay”, Vestnik SibGAU, 45:5 (2012), 84–89 (in Russian)

[4] A. V. Medvedev, “Some notes on H-models for non-inertis systems with a delay”, Vestnik SibGAU, 54:5 (2014), 24–34 (in Russian)

[5] B. Mondelbrot, Fractal Geometry of Nature, Institute of Computer Science, NITS, Regular and Chaotic Dynamics, M.–Izhevsk, 2010

[6] V. I. Arnol'd, Catastrophe theory, Springer-Verlag, Berlin, 1992 | MR | Zbl