Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_3_a8, author = {Alexander V. Medvedev and Eugene D. Mihov and Oleg V. Nepomnyashchiy}, title = {Mathematical modeling of {H-processes}}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {338--346}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a8/} }
TY - JOUR AU - Alexander V. Medvedev AU - Eugene D. Mihov AU - Oleg V. Nepomnyashchiy TI - Mathematical modeling of H-processes JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 338 EP - 346 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a8/ LA - en ID - JSFU_2016_9_3_a8 ER -
%0 Journal Article %A Alexander V. Medvedev %A Eugene D. Mihov %A Oleg V. Nepomnyashchiy %T Mathematical modeling of H-processes %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 338-346 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a8/ %G en %F JSFU_2016_9_3_a8
Alexander V. Medvedev; Eugene D. Mihov; Oleg V. Nepomnyashchiy. Mathematical modeling of H-processes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 338-346. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a8/
[1] Y. L. Fateev, D. D. Dmitriev, V. N. Tyapkin, E. N. Garin, V. V. Shaidurov, “The phase ambiguity resolution in the angle-measuring navigation equipment”, ICAAM (Shymkent, Kazakhstan, 2014), 12–15
[2] A. V. Medvedev, “Analysis of the data in the problem identification”, Computer analysis of simulation data, v. 2, BGU, Minsk, 1995, 201–206 (in Russian)
[3] A. V. Medvedev, “H-model for non-inertia systems with delay”, Vestnik SibGAU, 45:5 (2012), 84–89 (in Russian)
[4] A. V. Medvedev, “Some notes on H-models for non-inertis systems with a delay”, Vestnik SibGAU, 54:5 (2014), 24–34 (in Russian)
[5] B. Mondelbrot, Fractal Geometry of Nature, Institute of Computer Science, NITS, Regular and Chaotic Dynamics, M.–Izhevsk, 2010
[6] V. I. Arnol'd, Catastrophe theory, Springer-Verlag, Berlin, 1992 | MR | Zbl