Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_3_a6, author = {Anatoly P. Kopylov and Mikhail V. Korobkov}, title = {Rigidity conditions for the boundaries of submanifolds in a {Riemannian} manifold}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {320--331}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a6/} }
TY - JOUR AU - Anatoly P. Kopylov AU - Mikhail V. Korobkov TI - Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 320 EP - 331 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a6/ LA - en ID - JSFU_2016_9_3_a6 ER -
%0 Journal Article %A Anatoly P. Kopylov %A Mikhail V. Korobkov %T Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 320-331 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a6/ %G en %F JSFU_2016_9_3_a6
Anatoly P. Kopylov; Mikhail V. Korobkov. Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 320-331. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a6/
[1] A. P. Kopylov, “A rigidity condition for the boundary of a submanifold in a Riemannian manifold”, Doklady Mathematics, 77:3 (2008), 340–341 | DOI | MR | Zbl
[2] A. P. Kopylov, “Unique determination of domains”, Differential Geometry and its Applications, World Sci. Publ., Hackensack, NJ, 2008, 157–169 | DOI | MR | Zbl
[3] A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, AMS, Providence, 1973 | MR | Zbl
[4] E. P. Sen'kin, “Non-flexibility of convex surfaces”, Ukr. Geom. Sb., 12 (1972), 131–152 | MR | Zbl
[5] A. P. Kopylov, “Boundary values of mappings close to isometric mappings”, Siberian Math. J., 25:3 (1985), 438–447 | DOI | MR
[6] V. A. Aleksandrov, “Isometry of domains in $\mathbb R^n$ and relative isometry of their boundaries”, Siberian Math. J., 25:3 (1985), 339–347 | DOI | MR
[7] V. A. Aleksandrov, “Isometry of domains in $\mathbb R^n$ and relative isometry of their boundaries. II”, Siberian Math. J., 26:6 (1986), 783–787 | DOI | MR
[8] M. V. Korobkov, “Necessary and sufficient conditions for unique determination of plane domains”, Siberian Math. J., 49:3 (2008 436–451) | DOI | MR
[9] M. V. Korobkov, Some rigidity theorems in Analysis and Geometry, Dis. Dokt. Fiz.-Mat. Nauk, Novosibirsk, 2008 (in Russian)
[10] M. V. Korobkov, “A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains”, Siberian Advances in Mathematics, 20:4 (2010), 256–284 | DOI | MR
[11] A. D. Aleksandrov, Intrinsic Geometry of Convex Surfaces, English translation, Chapman Hall/CRC Taylor Francis Group, Boca Raton, 2006 | MR