On a class of $A$-analytic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 374-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $A$-analytic functions in case when $A$ is anti-holomorphic function. In paper for $A$-analytic functions the integral theorem of Cauchy, integral formula of Cauchy, expansion to Taylor series, expansion to Loran series, Picard's big theorem and Montel's theorem are proved.
Keywords: $A$-analytic function, integral theorem of Cauchy, integral formula of Cauchy, Taylor series, Loran series, Picard's big theorem, Montel's theorem.
@article{JSFU_2016_9_3_a12,
     author = {Azimbai Sadullaev and Nasridin M. Jabborov},
     title = {On a class of $A$-analytic functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {374--383},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a12/}
}
TY  - JOUR
AU  - Azimbai Sadullaev
AU  - Nasridin M. Jabborov
TI  - On a class of $A$-analytic functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 374
EP  - 383
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a12/
LA  - en
ID  - JSFU_2016_9_3_a12
ER  - 
%0 Journal Article
%A Azimbai Sadullaev
%A Nasridin M. Jabborov
%T On a class of $A$-analytic functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 374-383
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a12/
%G en
%F JSFU_2016_9_3_a12
Azimbai Sadullaev; Nasridin M. Jabborov. On a class of $A$-analytic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 374-383. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a12/

[1] L. Bers, Mathematical aspects of subsonic and transonic gas dynamics, Wiley, New York, 1958 | MR | Zbl

[2] H. Grötzsch, “Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardschen Satzes”, Ber. Verh. Sächs Akad. Wiss., 80 (1928), 503–507 | Zbl

[3] L. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton, N.J., 1966 | MR | Zbl

[4] P. P. Belinskiy, General properties of quasiconformal mappings, Nauka, M., 1974 (in Russian)

[5] B. Bojarski, “Homeomorphic solutions of Beltrami systems”, Doklady Akademii Nauk SSSR, 102:4 (1955), 661–664 (in Russian) | MR | Zbl

[6] B. Bojarski, “Generalized solutions of a system of differential equations of the first order ofthe elliptic type with discontinuous coefficients”, USSR Sbornik Mathematics, 43(85) (1957), 451–503 | MR

[7] N. M. Jabborov, Kh. Kh. Imomnazarov, Some initial-boundary value probles in the mechanics of two-speed media, Uzbek. Natsionalny Universitet, Tashkent, 2012 (in Russian)

[8] I. N. Vekua, Generalized analytical functions, Nauka, M., 1988 (in Russian) | MR

[9] V. Gutlyanski, V. Ryazanov, U. Srebro, E. Yakubov, “The Beltrami equation: a geometric approach”, J. Math. Sci., 175 (2011), 413–449 | DOI | MR | Zbl

[10] L. I. Volkovisskiy, Quasiconformal mappings, L'viv, 1954 (in Russian)

[11] L. Bers, “An outline of the theory of pseudoanalytic functions”, Bull. AMS, 62:4 (1956), 291–331 | DOI | MR | Zbl

[12] M. A. Lavrentyev, B. V. Shabat, Methods of complex variable functions theory, Fizmatgiz, M., 1958 (in Russian)

[13] S. L. Krushkal, R. Kyunau, Quasiconformal mappings — new methods and applications, Nauka, M., 1984 (in Russian) | MR

[14] A. L. Bukhgeym, “Inversion formulas in inverse problems”, Addition to the book: M. M. Lavrentyev, L. Ya. Savelyev, Linear operators and ill-posed problems, Nauka, M., 1991 (in Russian)

[15] A. L. Bukhgeym, S. G. Kazantsev, “Ellyptic systems of Beltrami type and tomography problems”, Doklady Akademii Nauk SSSR, 315 (1990), 15–19 (in Russian) | MR

[16] E. V. Arbuzov, “Cauchy problem for second order elliptic systems on the plane”, Sib. Math. Journal, 44:1 (2003), 3–20 | DOI | MR | Zbl

[17] E. V. Arbuzov, A. L. Bukhgeym, “Cauchy problem for $A$-harmonic funktions”, Doklady RAN, 349:5 (1996), 586–587 (in Russian) | MR | Zbl

[18] N. M. Jabborov, T. U. Otaboev, “Integral formula for $A(z)$-analytic functions”, Modern methods of mathematical physics and its applications, Trudy Respublik. Konferentsii (Tashkent, 2015) (in Russian)

[19] N. M. Jabborov, T. U. Otaboev, “Cauchy theorem for $A(z)$-analytic functions”, Uzbek Mat. Zhurn., 2014, no. 1, 15–18 (in Russian) | MR