Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_3_a12, author = {Azimbai Sadullaev and Nasridin M. Jabborov}, title = {On a class of $A$-analytic functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {374--383}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a12/} }
TY - JOUR AU - Azimbai Sadullaev AU - Nasridin M. Jabborov TI - On a class of $A$-analytic functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 374 EP - 383 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a12/ LA - en ID - JSFU_2016_9_3_a12 ER -
Azimbai Sadullaev; Nasridin M. Jabborov. On a class of $A$-analytic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 374-383. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a12/
[1] L. Bers, Mathematical aspects of subsonic and transonic gas dynamics, Wiley, New York, 1958 | MR | Zbl
[2] H. Grötzsch, “Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardschen Satzes”, Ber. Verh. Sächs Akad. Wiss., 80 (1928), 503–507 | Zbl
[3] L. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton, N.J., 1966 | MR | Zbl
[4] P. P. Belinskiy, General properties of quasiconformal mappings, Nauka, M., 1974 (in Russian)
[5] B. Bojarski, “Homeomorphic solutions of Beltrami systems”, Doklady Akademii Nauk SSSR, 102:4 (1955), 661–664 (in Russian) | MR | Zbl
[6] B. Bojarski, “Generalized solutions of a system of differential equations of the first order ofthe elliptic type with discontinuous coefficients”, USSR Sbornik Mathematics, 43(85) (1957), 451–503 | MR
[7] N. M. Jabborov, Kh. Kh. Imomnazarov, Some initial-boundary value probles in the mechanics of two-speed media, Uzbek. Natsionalny Universitet, Tashkent, 2012 (in Russian)
[8] I. N. Vekua, Generalized analytical functions, Nauka, M., 1988 (in Russian) | MR
[9] V. Gutlyanski, V. Ryazanov, U. Srebro, E. Yakubov, “The Beltrami equation: a geometric approach”, J. Math. Sci., 175 (2011), 413–449 | DOI | MR | Zbl
[10] L. I. Volkovisskiy, Quasiconformal mappings, L'viv, 1954 (in Russian)
[11] L. Bers, “An outline of the theory of pseudoanalytic functions”, Bull. AMS, 62:4 (1956), 291–331 | DOI | MR | Zbl
[12] M. A. Lavrentyev, B. V. Shabat, Methods of complex variable functions theory, Fizmatgiz, M., 1958 (in Russian)
[13] S. L. Krushkal, R. Kyunau, Quasiconformal mappings — new methods and applications, Nauka, M., 1984 (in Russian) | MR
[14] A. L. Bukhgeym, “Inversion formulas in inverse problems”, Addition to the book: M. M. Lavrentyev, L. Ya. Savelyev, Linear operators and ill-posed problems, Nauka, M., 1991 (in Russian)
[15] A. L. Bukhgeym, S. G. Kazantsev, “Ellyptic systems of Beltrami type and tomography problems”, Doklady Akademii Nauk SSSR, 315 (1990), 15–19 (in Russian) | MR
[16] E. V. Arbuzov, “Cauchy problem for second order elliptic systems on the plane”, Sib. Math. Journal, 44:1 (2003), 3–20 | DOI | MR | Zbl
[17] E. V. Arbuzov, A. L. Bukhgeym, “Cauchy problem for $A$-harmonic funktions”, Doklady RAN, 349:5 (1996), 586–587 (in Russian) | MR | Zbl
[18] N. M. Jabborov, T. U. Otaboev, “Integral formula for $A(z)$-analytic functions”, Modern methods of mathematical physics and its applications, Trudy Respublik. Konferentsii (Tashkent, 2015) (in Russian)
[19] N. M. Jabborov, T. U. Otaboev, “Cauchy theorem for $A(z)$-analytic functions”, Uzbek Mat. Zhurn., 2014, no. 1, 15–18 (in Russian) | MR