On one two-dimensional binary mixture’s motion in a flat layer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 279-287

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper is estimated a special solution for solving thermal diffusion equations, that describe motion of binary mixture in a flat layer. When Reynolds number ($Re\to0$) is small, it is possible to simplify these equations to some easier problems. In solving process to find pressure it is necessary to solve an inverse problem. Answers for non-stationary regime are presented in trigonometric Fourier series.
Keywords: Reynolds number, binary mixture, non-stationary regime.
Mots-clés : thermal diffusion equations
@article{JSFU_2016_9_3_a1,
     author = {Nemat Darabi and Hamid Malah},
     title = {On one two-dimensional binary mixture{\textquoteright}s motion in a flat layer},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {279--287},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a1/}
}
TY  - JOUR
AU  - Nemat Darabi
AU  - Hamid Malah
TI  - On one two-dimensional binary mixture’s motion in a flat layer
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 279
EP  - 287
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a1/
LA  - en
ID  - JSFU_2016_9_3_a1
ER  - 
%0 Journal Article
%A Nemat Darabi
%A Hamid Malah
%T On one two-dimensional binary mixture’s motion in a flat layer
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 279-287
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a1/
%G en
%F JSFU_2016_9_3_a1
Nemat Darabi; Hamid Malah. On one two-dimensional binary mixture’s motion in a flat layer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 3, pp. 279-287. http://geodesic.mathdoc.fr/item/JSFU_2016_9_3_a1/