On strongly algebraically closed lattices
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 202-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article some fundamental properties of existentially and algebraically closed lattices are investigated. We also define the notion of strongly algebraically closed lattices and we show that a $q'$-compact complete boolean lattice is strongly algebraically closed.
Keywords: existentially and algebraically closed lattices, strongly algebraically closed lattices, equationally noetherian lattice, complete Boolean algebras.
@article{JSFU_2016_9_2_a8,
     author = {Ali Molkhasi},
     title = {On strongly algebraically closed lattices},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {202--208},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a8/}
}
TY  - JOUR
AU  - Ali Molkhasi
TI  - On strongly algebraically closed lattices
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 202
EP  - 208
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a8/
LA  - en
ID  - JSFU_2016_9_2_a8
ER  - 
%0 Journal Article
%A Ali Molkhasi
%T On strongly algebraically closed lattices
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 202-208
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a8/
%G en
%F JSFU_2016_9_2_a8
Ali Molkhasi. On strongly algebraically closed lattices. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 202-208. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a8/

[1] V. A. Gorbunov, Algebraic theory of quasivarieties, Plenum, New York, 1998 | MR

[2] A. I. Malcev, Algebraic systems, Springer-Verlag, 1973 | MR

[3] A. Miasnikov, V. Rmankov, “Verbally closed subgroups of free groups”, Journal of Group Theory, 17 (2014), 29–40 | MR

[4] J. Schmid, “Algebraically and existentially closed distributive lattices”, Zeilschr. Math. Logik u. G. M., 25 (1979), 525–530 | DOI | MR | Zbl

[5] M. Shahryari, Existentially closed structures and some embedding theorems, 1311.2476

[6] A. Shevlyakov, “Algebraic geometry over boolean algebras in the language with constants”, J. Math. Sciences, 20 (2015), 724–757 | MR