On strongly algebraically closed lattices
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 202-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article some fundamental properties of existentially and algebraically closed lattices are investigated. We also define the notion of strongly algebraically closed lattices and we show that a $q'$-compact complete boolean lattice is strongly algebraically closed.
Keywords: existentially and algebraically closed lattices, strongly algebraically closed lattices, equationally noetherian lattice, complete Boolean algebras.
@article{JSFU_2016_9_2_a8,
     author = {Ali Molkhasi},
     title = {On strongly algebraically closed lattices},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {202--208},
     year = {2016},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a8/}
}
TY  - JOUR
AU  - Ali Molkhasi
TI  - On strongly algebraically closed lattices
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 202
EP  - 208
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a8/
LA  - en
ID  - JSFU_2016_9_2_a8
ER  - 
%0 Journal Article
%A Ali Molkhasi
%T On strongly algebraically closed lattices
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 202-208
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a8/
%G en
%F JSFU_2016_9_2_a8
Ali Molkhasi. On strongly algebraically closed lattices. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 202-208. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a8/

[1] V. A. Gorbunov, Algebraic theory of quasivarieties, Plenum, New York, 1998 | MR

[2] A. I. Malcev, Algebraic systems, Springer-Verlag, 1973 | MR

[3] A. Miasnikov, V. Rmankov, “Verbally closed subgroups of free groups”, Journal of Group Theory, 17 (2014), 29–40 | MR

[4] J. Schmid, “Algebraically and existentially closed distributive lattices”, Zeilschr. Math. Logik u. G. M., 25 (1979), 525–530 | DOI | MR | Zbl

[5] M. Shahryari, Existentially closed structures and some embedding theorems, 1311.2476

[6] A. Shevlyakov, “Algebraic geometry over boolean algebras in the language with constants”, J. Math. Sciences, 20 (2015), 724–757 | MR