An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 180-191

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate an identification problem of a coefficient at the nonlinear lowest term in a 2D semilinear parabolic equation with overdetermination conditions given on a smooth curve. The unknown coefficient has the form of a product of two functions each depending on time and a spatial variable. We prove solvability of the problem in classes of smooth bounded functions. We present an example of input data satisfying the conditions of the theorem and the corresponding solution.
Keywords: inverse problem, semilinear parabolic equation, Cauchy problem, lowest term coefficient, weak approximation method, local solvability, overdetermination conditions on a smooth curve.
@article{JSFU_2016_9_2_a6,
     author = {Ekaterina N. Kriger and Igor V. Frolenkov},
     title = {An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {180--191},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a6/}
}
TY  - JOUR
AU  - Ekaterina N. Kriger
AU  - Igor V. Frolenkov
TI  - An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 180
EP  - 191
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a6/
LA  - en
ID  - JSFU_2016_9_2_a6
ER  - 
%0 Journal Article
%A Ekaterina N. Kriger
%A Igor V. Frolenkov
%T An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 180-191
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a6/
%G en
%F JSFU_2016_9_2_a6
Ekaterina N. Kriger; Igor V. Frolenkov. An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 180-191. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a6/