Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_2_a6, author = {Ekaterina N. Kriger and Igor V. Frolenkov}, title = {An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {180--191}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a6/} }
TY - JOUR AU - Ekaterina N. Kriger AU - Igor V. Frolenkov TI - An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 180 EP - 191 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a6/ LA - en ID - JSFU_2016_9_2_a6 ER -
%0 Journal Article %A Ekaterina N. Kriger %A Igor V. Frolenkov %T An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 180-191 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a6/ %G en %F JSFU_2016_9_2_a6
Ekaterina N. Kriger; Igor V. Frolenkov. An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 180-191. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a6/
[1] N. N. Yanenko, The Method of Fractional Steps for Solving Multi-Dimensional Problems of Mathematical Physics, Nauka, Novosibirsk, 1967 (in Russian)
[2] Yu. Ya. Belov, Inverse Problems for Partial Differential Equations, VSP, Utrecht, 2002 | MR | Zbl
[3] Yu. Ya. Belov, “On Estimates of Solutions of the Split Problems for Some Multi-Dimensional Partial Differential Equations”, Journal of Siberian Federal University. Mathematics Physics, 2:3 (2009), 258–270
[4] Yu. Ya. Belov, I. V. Frolenkov, “Coefficient Identification Problems for Semilinear Parabolic Equations”, Doklady Mathematics, 72:2 (2005), 737–739 | Zbl
[5] E. N. Kriger, I. V. Frolenkov, “An Identification Problem of the Special Form Coefficient at a Nonlinear Term for a Two-Dimensional Parabolic Equation”, Differential equations. Function spaces. Approximation theory, International Conference dedicated to the 105th anniversary of the birthday of Sergei L. Sobolev, Abstracts (August 18–24, 2013, Novosibirsk, Russia), Sobolev Institute of Mathematics, Novosibirsk, 2013, 176 (in Russian)
[6] Yu. Ya. Belov, I. V. Frolenkov, “On the Problem of Identification of Two Coefficients of a Parabolic Semi-Linear Overdetermined Equation Defined on a Smooth Curve”, Kompyuternye tehnologii, 11:1, Special issue devoted to N.N. Yanenko's 85-th anniversary (2006), 46–54 (in Russian) | Zbl
[7] E. N. Kriger, I. V. Frolenkov, “An Identification Problem of Coefficient for Two-Dimensional Semilinear Parabolic Equation with the Cauchy Data”, Russian Mathematics, 59:5 (2015), 17–31 | DOI | MR | Zbl
[8] E. G. Savateev, “On the Problem of Identification of a Coefficient in a Parabolic Equation”, Sibirskii Mat. Zhurnal, 36:1 (1995), 177–185 (in Russian) | MR | Zbl
[9] A. I. Kozhanov, “Nonlinear Loaded Equations and Inverse Problems”, Vych. Matematika i Mat. Physika, 44:4 (2004), 694–716 (in Russian) | MR | Zbl
[10] I. V. Frolenkov, E. N. Kriger, “Existence of a Solution of the Problem of Identification of a Coefficient at the Source Function”, Journal of Mathematical Sciences, 203:4 (2014), 464–477 | DOI | MR
[11] I. V. Frolenkov, E. N. Kriger, “An Identification Problem of the Source Function of the Special Form in Two-Dimensional Parabolic Equation”, Journal of Siberian Federal University. Mathematics Physics, 3:4 (2010), 556–564 (in Russian)
[12] I. V. Frolenkov, E. N. Kriger, “An Identification Problem of Coefficient in the Special Form at Source Function for Multi-Dimensional Parabolic Equation with Cauchy Data”, Journal of Siberian Federal University. Mathematics Physics, 6:2 (2013), 186–199
[13] L. S. Pontryagin, Ordinary Differential Equations, Nauka, M., 1982 (in Russian) | MR | Zbl