On solvability of systems of symbolic polynomial equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 166-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approaches to solving the systems of non-commutative polynomial equations in the form of formal power series (FPS) based on the relation with the corresponding commutative equations are developed. Every FPS is mapped to its commutative image — power series, which is obtained under the assumption that all symbols of the alphabet denote commutative variables assigned as values in the field of complex numbers. It is proved that if the initial non-commutative system of polynomial equations is consistent, then the system of equations being its commutative image is consistent. The converse is not true in general. It is shown that in the case of a non-commutative ring the system of equations can have no solution, have a finite number of solutions, as well as having an infinite number of solutions, which is fundamentally different from the case of complex variables.
Keywords: non-commutative ring, formal power series, commutative image.
Mots-clés : polynomial equations
@article{JSFU_2016_9_2_a4,
     author = {Oleg I. Egorushkin and Irina V. Kolbasina and Konstantin V. Safonov},
     title = {On solvability of systems of symbolic polynomial equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {166--172},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a4/}
}
TY  - JOUR
AU  - Oleg I. Egorushkin
AU  - Irina V. Kolbasina
AU  - Konstantin V. Safonov
TI  - On solvability of systems of symbolic polynomial equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 166
EP  - 172
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a4/
LA  - en
ID  - JSFU_2016_9_2_a4
ER  - 
%0 Journal Article
%A Oleg I. Egorushkin
%A Irina V. Kolbasina
%A Konstantin V. Safonov
%T On solvability of systems of symbolic polynomial equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 166-172
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a4/
%G en
%F JSFU_2016_9_2_a4
Oleg I. Egorushkin; Irina V. Kolbasina; Konstantin V. Safonov. On solvability of systems of symbolic polynomial equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 166-172. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a4/

[1] V. M. Glushkov, G. E. Tseytlin, E. L. Yuschenko, Algebra, Languages, Programming, Naukova dumka, Kiev, 1973 (in Russian)

[2] A. Salomaa, M. Soitolla, Automata-theoretic aspects of formal power series, Springer Verlag, N.-Y., 1978 | MR | Zbl

[3] B. V. Verzhbitsky, “The simplification of the power series of several matrices”, Mathematicheskii sbornik, 42:6 (1935), 737–743 (in Russian)

[4] V. I. Bykov, A. M. Kytmanov, M. Z. Lazman, Methods of elimination in computer algebra of polynomials, Nauka, Novosibirsk, 1991 (in Russian)

[5] A. L. Semenov, “Algorithmic problems for power series and context-free grammars”, Doklady Akad. Nauk SSSR, 212 (1973), 50–52 (in Russian) | MR | Zbl

[6] K. V. Safonov, O. I. Egorushkin, “On syntax analysis and recognition problem of V. M. Glushkov for context-free languages of Chomsky”, Vestnik Tomskogo Gos. Univ., 2006, no. 17, 63–67 (in Russian)

[7] K. V. Safonov, “On conditions for the sum of a power series to be algebraic and rational”, Matem. Zametki, 41:3 (1987), 185–189 (in Russian) | MR | Zbl

[8] K. V. Safonov, “On power series of algebraic and rational functions in $C^{n}$”, Journal of Math. Analysis and Applications, 243 (2000), 261–277 | DOI | MR | Zbl

[9] M. Herve, Several complex variables. Local theory, Oxford University, Oxford, 1963 | MR | Zbl

[10] L. A. Aizenberg, A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, AMS, RI, Providence, 1983 | Zbl