Multiple optima identification using multi-strategy multimodal genetic algorithm
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 246-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multimodal optimization (MMO) is the problem of finding many or all global and local optima. In this study, a novel approach based on a metaheuristic for designing multi-strategy genetic algorithm is proposed. The approach controls the interactions of many search techniques (different genetic algorithms for MMO) and leads to the self-configuring solving of problems with a priori unknown structure. The results of numerical experiments for classical benchmark problems and benchmark problems from the IEEE CEC competition on MMO are presented. The proposed approach has demonstrated efficiency better than standard niching techniques and comparable to advanced algorithms. The main feature of the approach is that it does not require the participation of the human-expert, because it operates in an automated, self-configuring way.
Keywords: multimodal optimization, self-configuration, genetic algorithm, metaheuristic, niching.
@article{JSFU_2016_9_2_a13,
     author = {Evgenii A. Sopov},
     title = {Multiple optima identification using multi-strategy multimodal genetic algorithm},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {246--257},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a13/}
}
TY  - JOUR
AU  - Evgenii A. Sopov
TI  - Multiple optima identification using multi-strategy multimodal genetic algorithm
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 246
EP  - 257
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a13/
LA  - en
ID  - JSFU_2016_9_2_a13
ER  - 
%0 Journal Article
%A Evgenii A. Sopov
%T Multiple optima identification using multi-strategy multimodal genetic algorithm
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 246-257
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a13/
%G en
%F JSFU_2016_9_2_a13
Evgenii A. Sopov. Multiple optima identification using multi-strategy multimodal genetic algorithm. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 246-257. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a13/

[1] S. Das, S. Maity, B.-Y. Qub, P. N. Suganthan, “Real-parameter evolutionary multimodal optimization: a survey of the state-of-the art”, Swarm and Evolutionary Computation, 1 (2011), 71–88 | DOI

[2] M. Preuss, “Tutorial on Multimodal Optimization”, 13th International Conference on Parallel Problem Solving from Nature, PPSN 2014 (Ljubljana, Slovenia, 2014)

[3] X. Li, A. Engelbrecht, M. G. Epitropakis, Benchmark functions for CEC'2013 special session and competition on niching methods for multimodal function optimization, Tech. Rep., Evol. Comput. Mach. Learn. Group, RMIT University, Melbourne, VIC, Australia, 2013

[4] Y. Liu, X. Ling, Zh. Shi, M. Lv, J. Fang, L. Zhang, “A Survey on Particle Swarm Optimization Algorithms for Multimodal Function Optimization”, Journal of Software, 6:12 (2011), 2449–2455

[5] K. Deb, A. Saha, “Finding Multiple Solutions for Multimodal Optimization Problems Using a Multi-Objective Evolutionary Approach”, Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, ACM, New York, 2010, 447–454 | DOI

[6] M. Bessaou, A. Petrowski, P. Siarry, “Island Model Cooperating with Speciation for Multimodal Optimization”, Parallel Problem Solving from Nature, PPSN VI, Lecture Notes in Computer Science, 1917, 2000, 437–446 | DOI

[7] E. L. Yu, P. N. Suganthan, “Ensemble o niching algorithms”, Information Sciences, 180:15 (2010), 2815–2833 | DOI | MR

[8] B. Qu, J. Liang, P. N. Suganthan, T. Chen, “Ensemble of Clearing Differential Evolution for Multi-modal Optimization”, Advances in Swarm Intelligence, Lecture Notes in Computer Science, 7331, 2012, 350–357 | DOI

[9] E. Sopov, “A Self-configuring Metaheuristic for Control of Multi-Strategy Evolutionary Search”, ICSI-CCI 2015, v. III, Lecture Notes in Computer Science, 9142, 2015, 29–37 | DOI

[10] G. Singh, K. Deb, “Comparison of multi-modal optimization algorithms based on evolutionary algorithms”, Proceedings of the Genetic and Evolutionary Computation Conference (Seattle, 2006), 1305–1312

[11] M. Preuss, S. Wessing, “Measuring multimodal optimization solution sets with a view to multiobjective techniques”, EVOLVE — A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, AISC, 227, Springer, Heidelberg, 123–137

[12] M. Preuss, C. Stoean, R. Stoean, “Niching foundations: basin identification on fixed-property generated landscapes”, Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, 2011, 837–844

[13] E. S. Semenkin, M. E. Semenkina, “Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator”, Advances in Swarm Intelligence, Lecture Notes in Computer Science, 7331, 2012, 414–421 | DOI

[14] X. Li, A. Engelbrecht, M. Epitropakis, Results of the 2013 IEEE CEC Competition on Niching Methods for Multimodal Optimization, Report presented at 2013 IEEE Congress on Evolutionary Computation Competition on: Niching Methods for Multimodal Optimization, 2013

[15] D. Molina, A. Puris, R. Bello, F. Herrera, “Variable mesh optimization for the 2013 CEC special session niching methods for multimodal optimization”, Proc. 2013 IEEE Congress on Evolutionary Computation, CEC'13, 2013, 87–94 | DOI

[16] M. G. Epitropakis, X. Li, E. K. Burke, “A dynamic archive niching differential evolution algorithm for multimodal optimization”, Proc. 2013 IEEE Congress on Evolutionary Computation, CEC'13, 2013, 79–86 | DOI

[17] S. Bandaru, K. Deb, “A parameterless-niching-assisted bi-objective approach to multimodal optimization”, Proc. 2013 IEEE Congress on Evolutionary Computation, CEC'13, 2013, 95–102 | DOI