On the properties of solutions of multidimensional nonlinear filtration problem with variable density and nonlocal boundary condition in the case of fast diffusion
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 225-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions of global existence of solutions of a nonlinear filtration problem in an inhomogeneous medium are investigated in this paper. Various techniques such as the method of standard equations, self-similar analysis and the comparison principle are used to obtain results. The influence of inhomogeneous medium on the evolution process is analyzed. The critical global existence exponent and the critical Fujita exponent are obtained. Asymptotic behavior of solutions in the case of the global solvability is established.
Keywords: asymptotics, critical exponent, inhomogeneous density.
Mots-clés : filtration
@article{JSFU_2016_9_2_a11,
     author = {Zafar R. Rakhmonov},
     title = {On the properties of solutions of multidimensional nonlinear filtration problem with variable density and nonlocal boundary condition in the case of fast diffusion},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {225--234},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a11/}
}
TY  - JOUR
AU  - Zafar R. Rakhmonov
TI  - On the properties of solutions of multidimensional nonlinear filtration problem with variable density and nonlocal boundary condition in the case of fast diffusion
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 225
EP  - 234
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a11/
LA  - en
ID  - JSFU_2016_9_2_a11
ER  - 
%0 Journal Article
%A Zafar R. Rakhmonov
%T On the properties of solutions of multidimensional nonlinear filtration problem with variable density and nonlocal boundary condition in the case of fast diffusion
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 225-234
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a11/
%G en
%F JSFU_2016_9_2_a11
Zafar R. Rakhmonov. On the properties of solutions of multidimensional nonlinear filtration problem with variable density and nonlocal boundary condition in the case of fast diffusion. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 225-234. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a11/

[1] M. M. Aripov, Standard Equation's Methods for Solutions to Nonlinear problems, Monograph, FAN, Tashkent, 1988 (in Russian) | MR

[2] A. S. Kalashnikov, “Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations”, Russian Math. Surveys, 42 (1987), 169–222 | DOI | MR | Zbl

[3] V. A. Galaktionov, J. L. Vazquez, “The problem of blow-up in nonlinear parabolic equations”, Discrete and continuous dynamical systems, 8:2 (2002), 399–433 | DOI | MR | Zbl

[4] C. P. Wang, S. N. Zheng, “Critical Fujita exponents of degenerate and singular parabolic equations”, Proc. Roy. Soc. Edinburgh, Sect. A, 136:2 (2006), 415–430 | DOI | MR | Zbl

[5] W. Zejia, Y. Jingxue, W. Chunpeng, “Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition”, Appl. Math. Lett., 20 (2007), 142–147 | DOI | MR | Zbl

[6] Z. Li, Ch. Mu, “Critical exponents for a fast diffusive polytrophic filtration equation with nonlinear boundary flux”, J. Math. Anal. Appl., 34 (2008), 55–64 | MR

[7] C. Jin, J. Yin, “Critical exponents and non-extinction for a fast diffusive polytrophic filtration equation with nonlinear boundary sources”, Nonlinear Anal., 67 (2007), 2217–2223 | DOI | MR | Zbl

[8] P. Zheng, Ch. Mu, D. Liu, X. Yao, Sh. Zhou, “Blow-up analysis for a quasilinear degenerate parabolic equation with strongly nonlinear source”, Abstract and Appl. Anal., 2012 (2012), 109546 | MR | Zbl

[9] W. Du, Z. Li, “Critical exponents for heat conduction equation with a nonlinear Boundary condition”, Int. Jour. of Math. Anal., 7:11 (2013), 517–524 | MR | Zbl

[10] Li Z., Mu Ch., Du W., “Critical Fujita exponent for a fast diffusive equation with variable coefficients”, Bull. Korean Math. Soc., 50:1 (2013), 105–116 | DOI | MR | Zbl

[11] V. A. Galaktionov, H. A. Levine, “On critical Fujita exponents for heat equations with nonlinear flux boundary condition on the boundary”, Israel J. Math., 94 (1996), 125–146 | DOI | MR | Zbl

[12] M. M. Aripov, Z. R. Rakhmonov, “On the asymptotic behavior of the self-similar solutions of a nonlinear problem of polytropic filtration with nonlinear boundary conditions”, Vychislitel'nye tekhnologii, 18:4 (2013), 50–55 (in Russian)

[13] M. Aripov, Z. Rakhmonov, “Numerical simulation of a nonlinear problem of a fast diffusive filtration with a variable density and nonlocal boundary conditions”, Mathematical Models and Simulation in Science and Engineering, 23 (2014), 72–77

[14] Z. R. Rakhmonov, “On the behavior of solutions of the problem of nonlinear filtration with a variable density and nonlocal boundary condition”, Uzbek. Matem. Zurnal, 2015, no. 1, 75–85 (in Russian)

[15] Z. R. Rakhmonov, “On one nonlinear problem of non-Newtonian Filtration in an inhomogeneous medium with nonlocal boundary conditions”, KazNU Bulletin, 2014, no. 3, 45–56 (in Russian)