Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_2_a11, author = {Zafar R. Rakhmonov}, title = {On the properties of solutions of multidimensional nonlinear filtration problem with variable density and nonlocal boundary condition in the case of fast diffusion}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {225--234}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a11/} }
TY - JOUR AU - Zafar R. Rakhmonov TI - On the properties of solutions of multidimensional nonlinear filtration problem with variable density and nonlocal boundary condition in the case of fast diffusion JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 225 EP - 234 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a11/ LA - en ID - JSFU_2016_9_2_a11 ER -
%0 Journal Article %A Zafar R. Rakhmonov %T On the properties of solutions of multidimensional nonlinear filtration problem with variable density and nonlocal boundary condition in the case of fast diffusion %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 225-234 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a11/ %G en %F JSFU_2016_9_2_a11
Zafar R. Rakhmonov. On the properties of solutions of multidimensional nonlinear filtration problem with variable density and nonlocal boundary condition in the case of fast diffusion. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 225-234. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a11/
[1] M. M. Aripov, Standard Equation's Methods for Solutions to Nonlinear problems, Monograph, FAN, Tashkent, 1988 (in Russian) | MR
[2] A. S. Kalashnikov, “Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations”, Russian Math. Surveys, 42 (1987), 169–222 | DOI | MR | Zbl
[3] V. A. Galaktionov, J. L. Vazquez, “The problem of blow-up in nonlinear parabolic equations”, Discrete and continuous dynamical systems, 8:2 (2002), 399–433 | DOI | MR | Zbl
[4] C. P. Wang, S. N. Zheng, “Critical Fujita exponents of degenerate and singular parabolic equations”, Proc. Roy. Soc. Edinburgh, Sect. A, 136:2 (2006), 415–430 | DOI | MR | Zbl
[5] W. Zejia, Y. Jingxue, W. Chunpeng, “Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition”, Appl. Math. Lett., 20 (2007), 142–147 | DOI | MR | Zbl
[6] Z. Li, Ch. Mu, “Critical exponents for a fast diffusive polytrophic filtration equation with nonlinear boundary flux”, J. Math. Anal. Appl., 34 (2008), 55–64 | MR
[7] C. Jin, J. Yin, “Critical exponents and non-extinction for a fast diffusive polytrophic filtration equation with nonlinear boundary sources”, Nonlinear Anal., 67 (2007), 2217–2223 | DOI | MR | Zbl
[8] P. Zheng, Ch. Mu, D. Liu, X. Yao, Sh. Zhou, “Blow-up analysis for a quasilinear degenerate parabolic equation with strongly nonlinear source”, Abstract and Appl. Anal., 2012 (2012), 109546 | MR | Zbl
[9] W. Du, Z. Li, “Critical exponents for heat conduction equation with a nonlinear Boundary condition”, Int. Jour. of Math. Anal., 7:11 (2013), 517–524 | MR | Zbl
[10] Li Z., Mu Ch., Du W., “Critical Fujita exponent for a fast diffusive equation with variable coefficients”, Bull. Korean Math. Soc., 50:1 (2013), 105–116 | DOI | MR | Zbl
[11] V. A. Galaktionov, H. A. Levine, “On critical Fujita exponents for heat equations with nonlinear flux boundary condition on the boundary”, Israel J. Math., 94 (1996), 125–146 | DOI | MR | Zbl
[12] M. M. Aripov, Z. R. Rakhmonov, “On the asymptotic behavior of the self-similar solutions of a nonlinear problem of polytropic filtration with nonlinear boundary conditions”, Vychislitel'nye tekhnologii, 18:4 (2013), 50–55 (in Russian)
[13] M. Aripov, Z. Rakhmonov, “Numerical simulation of a nonlinear problem of a fast diffusive filtration with a variable density and nonlocal boundary conditions”, Mathematical Models and Simulation in Science and Engineering, 23 (2014), 72–77
[14] Z. R. Rakhmonov, “On the behavior of solutions of the problem of nonlinear filtration with a variable density and nonlocal boundary condition”, Uzbek. Matem. Zurnal, 2015, no. 1, 75–85 (in Russian)
[15] Z. R. Rakhmonov, “On one nonlinear problem of non-Newtonian Filtration in an inhomogeneous medium with nonlocal boundary conditions”, KazNU Bulletin, 2014, no. 3, 45–56 (in Russian)