@article{JSFU_2016_9_2_a1,
author = {Ilia V. Barkov},
title = {Bidiagonal ranks of completely (0-)simple semigroups},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {144--148},
year = {2016},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a1/}
}
Ilia V. Barkov. Bidiagonal ranks of completely (0-)simple semigroups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 144-148. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a1/
[1] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories, W. de Gruyter, Berlin–New York, 2000 | MR | Zbl
[2] V. K. Kartashov, “Independent systems of generators and the Hopf property for unary algebras”, Diskretn. Mat. i Pril., 20:4 (2009), 79–84 (in Russian) | DOI | MR
[3] E.F. Robertson, N. Ruškuc, M.R. Thomson, “On finite generation and other finiteness conditions for wreath products semigroups”, Comm. Algebra, 30:8 (2002), 3851–3873 | DOI | MR | Zbl
[4] M.R. Thomson, Finiteness Conditions of Wreath Products of Semigroups and Related Properties of Diagonal Acts, PhD thesis, University of St. Andrews, 2001
[5] P. Gallagher, “On the finite and non-finite generation of diagonal acts”, Comm. Algebra, 34:9 (2006), 3123–3137 | DOI | MR | Zbl
[6] P. Gallagher, N. Ruškuc, “Finite generation of diagonal acts of some infinite semigroups of transformations and relations”, Bull. Austral. Math. Soc., 72:1 (2005), 139–146 | DOI | MR | Zbl
[7] T. V. Apraksina, “Diagonal acta over semigroups of isotone transformations”, Chebysh. sbornik, 12:1 (2011), 10–16 (in Russian) | MR | Zbl
[8] T. V. Apraksina, I. V. Barkov, I. B. Kozhukhov, “Diagonal ranks of semigroups”, Semigroup Forum, 90:2 (2015), 386–400 | DOI | MR | Zbl
[9] I. V. Barkov, R. R. Shakirov, “Finite semigroups with minimal diagonal rank”, Mat. vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 16 (2014), 55–63 (in Russian)
[10] A. H. Clifford, G. B. Preston, Algebraic Theory of Semigroups, American Mathematical Soc., Providence, R.I., 1967 | MR | Zbl