Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_2_a0, author = {Marat G. Ahmadiev and Samat N. Timergaliev and Liliya S. Kharasova}, title = {Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow {Timoshenko-type} shells}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {131--143}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a0/} }
TY - JOUR AU - Marat G. Ahmadiev AU - Samat N. Timergaliev AU - Liliya S. Kharasova TI - Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow Timoshenko-type shells JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 131 EP - 143 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a0/ LA - en ID - JSFU_2016_9_2_a0 ER -
%0 Journal Article %A Marat G. Ahmadiev %A Samat N. Timergaliev %A Liliya S. Kharasova %T Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow Timoshenko-type shells %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 131-143 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a0/ %G en %F JSFU_2016_9_2_a0
Marat G. Ahmadiev; Samat N. Timergaliev; Liliya S. Kharasova. Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow Timoshenko-type shells. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a0/
[1] K. Z. Galimov, Principles of the Nonlinear Theory of Thin Shells, Kazan Univ. Press, Kazan, 1975 (in Russian)
[2] I. I. Vorovich, Mathematical Problems of Nonlinear Theory of Shallow Shells, Nauka, M., 1989 (in Russian) | MR | Zbl
[3] N. F. Morozov, Selected two-dimensional problems of elasticity theory, LGU, Leningrad, 1978 (in Russian) | MR
[4] M. M. Karchevskii, “Solvability of Variational Problems of the Nonlinear Theory of Shallow Shells”, Differents. Uravneniya, 27:7 (1991), 1196–1203 (in Russian) | MR
[5] S. N. Timergaliev, Existence Theorems in Nonlinear Theory of Thin Elastic Shells, Kazan Univ. Press, Kazan, 2011
[6] S.N. Timergaliev, “Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges”, Russian Mathematics, 55:8 (2011), 47–58 | DOI | MR | Zbl
[7] S. N. Timergaliev, “Proof of the Solvability of a System of Partial Differential Equations in the Nonlinear Theory of Shallow Shells of Timoshenko Type”, Differential Equations, 48:3 (2012), 458–463 | DOI | MR | Zbl
[8] S. N. Timergaliev, “On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges”, Russian Mathematics, 58:3 (2014), 31–46 | DOI | MR | Zbl
[9] S. N. Timergaliev, “On the Existence of Solutions of a Nonlinear Boundary-Value Problem for the System of Partial Differential Equations of the Theory of Timoshenko Type Shallow Shells with Free Edges”, Differents. Uravneniya, 51:3 (2015), 373–386 (in Russian) | MR | Zbl
[10] S. N. Timergaliev, A. N. Uglov, L. S. Kharasova, “Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges”, Russian Mathematics, 59:5 (2015), 41–51 | DOI | MR | Zbl
[11] I. N. Vekua, Generalized Analytic Function, Nauka, M., 1988 (in Russian) | MR
[12] F. D. Gakhov, Boundary-Value Problems, Fizmatgiz, M., 1963 (in Russian)
[13] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Gostekhizdat, M., 1956 (in Russian) | MR