Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow Timoshenko-type shells
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 131-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability of a system of nonlinear second order partial differential equations with given initial conditions is considered in the paper. Reduction of the initial system of equations to one nonlinear operator equation is used to study the problem. The solvability is established with the use of the principle of contracting mappings.
Keywords: system of nonlinear differential equations, equilibrium equations, integral representations, existence theorem.
@article{JSFU_2016_9_2_a0,
     author = {Marat G. Ahmadiev and Samat N. Timergaliev and Liliya S. Kharasova},
     title = {Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow {Timoshenko-type} shells},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {131--143},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a0/}
}
TY  - JOUR
AU  - Marat G. Ahmadiev
AU  - Samat N. Timergaliev
AU  - Liliya S. Kharasova
TI  - Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow Timoshenko-type shells
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 131
EP  - 143
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a0/
LA  - en
ID  - JSFU_2016_9_2_a0
ER  - 
%0 Journal Article
%A Marat G. Ahmadiev
%A Samat N. Timergaliev
%A Liliya S. Kharasova
%T Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow Timoshenko-type shells
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 131-143
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a0/
%G en
%F JSFU_2016_9_2_a0
Marat G. Ahmadiev; Samat N. Timergaliev; Liliya S. Kharasova. Solvability of one nonlinear boundary-value problem for a system of differential equations of the theory of shallow Timoshenko-type shells. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/JSFU_2016_9_2_a0/

[1] K. Z. Galimov, Principles of the Nonlinear Theory of Thin Shells, Kazan Univ. Press, Kazan, 1975 (in Russian)

[2] I. I. Vorovich, Mathematical Problems of Nonlinear Theory of Shallow Shells, Nauka, M., 1989 (in Russian) | MR | Zbl

[3] N. F. Morozov, Selected two-dimensional problems of elasticity theory, LGU, Leningrad, 1978 (in Russian) | MR

[4] M. M. Karchevskii, “Solvability of Variational Problems of the Nonlinear Theory of Shallow Shells”, Differents. Uravneniya, 27:7 (1991), 1196–1203 (in Russian) | MR

[5] S. N. Timergaliev, Existence Theorems in Nonlinear Theory of Thin Elastic Shells, Kazan Univ. Press, Kazan, 2011

[6] S.N. Timergaliev, “Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges”, Russian Mathematics, 55:8 (2011), 47–58 | DOI | MR | Zbl

[7] S. N. Timergaliev, “Proof of the Solvability of a System of Partial Differential Equations in the Nonlinear Theory of Shallow Shells of Timoshenko Type”, Differential Equations, 48:3 (2012), 458–463 | DOI | MR | Zbl

[8] S. N. Timergaliev, “On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges”, Russian Mathematics, 58:3 (2014), 31–46 | DOI | MR | Zbl

[9] S. N. Timergaliev, “On the Existence of Solutions of a Nonlinear Boundary-Value Problem for the System of Partial Differential Equations of the Theory of Timoshenko Type Shallow Shells with Free Edges”, Differents. Uravneniya, 51:3 (2015), 373–386 (in Russian) | MR | Zbl

[10] S. N. Timergaliev, A. N. Uglov, L. S. Kharasova, “Solvability of geometrically nonlinear boundary-value problems for shallow shells of Timoshenko type with pivotally supported edges”, Russian Mathematics, 59:5 (2015), 41–51 | DOI | MR | Zbl

[11] I. N. Vekua, Generalized Analytic Function, Nauka, M., 1988 (in Russian) | MR

[12] F. D. Gakhov, Boundary-Value Problems, Fizmatgiz, M., 1963 (in Russian)

[13] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Gostekhizdat, M., 1956 (in Russian) | MR