Numerical investigation of solutions to a reaction-diffusion system with variable density
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 90-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we demonstrate the possibilities of the self-similar and approximately self-similar approaches for studying solutions of a nonlinear mutual reaction-diffusion system. The asymptotic behavior of compactly supported solutions and free boundary is studied. Based on established qualitative properties of solutions numerical computation is carried out. The solutions are presented in visualization form, which allows observing evolution of the studied process in time.
Keywords: double nonlinear reaction-diffusion system, self-similar solutions, asymptotics, numerical calculations.
@article{JSFU_2016_9_1_a9,
     author = {Shahlo A. Sadullaeva},
     title = {Numerical investigation of solutions to a reaction-diffusion system with variable density},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {90--101},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a9/}
}
TY  - JOUR
AU  - Shahlo A. Sadullaeva
TI  - Numerical investigation of solutions to a reaction-diffusion system with variable density
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 90
EP  - 101
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a9/
LA  - en
ID  - JSFU_2016_9_1_a9
ER  - 
%0 Journal Article
%A Shahlo A. Sadullaeva
%T Numerical investigation of solutions to a reaction-diffusion system with variable density
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 90-101
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a9/
%G en
%F JSFU_2016_9_1_a9
Shahlo A. Sadullaeva. Numerical investigation of solutions to a reaction-diffusion system with variable density. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 90-101. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a9/

[1] M. Aripov, Sh. A. Sadullaeva, “To solutions of one nondivergent type parabolic equation with double nonlinearity”, Advances and Progress in Analysis, 2010, 1–18

[2] M. Aripov, Sh. A. Sadullaeva, “To properties of the equation of reaction diffusion with double nonlinearity and distributed parameters”, Journal of Sibirian Federal University. Mathematics $\$ Physics, 6 (2013), 157–167

[3] M. Aripov, “Approximate self-similar approach for solving of quasilinear parabolic equation”, Experimentation, Modeling and Computation in Flow, Turbulence and Combustion, v. 2, Wiley, 1997, 19–26 | Zbl

[4] M. Aripov, “Asymptotic of the solution of the non-Newton polytropical filtration equation”, Zeitschrift fur Angewandte Mathematik und Mechanik, 80:3 (2000), 767–768

[5] M. Aripov, J. Muhammadiev, “Asymptotic behavior of automodel solutions for one system of quasilinear equations of parabolic type”, Buletin Stiintific-Universitatea din Pitesti, Seria Matematica i Informatica, 3 (1999), 19–40

[6] M. Aripov, Method of the standard equation for the solution of the nonlinear value problem, Fan, Tashkent, 1988

[7] R. Kersner, J. Reyes, A. Tesei, “One a class of nonlinear parabolic equations with variable density and absorption advances”, Diff. Equations, 7 (2002), 15–176 | MR

[8] I. Kombe, “Double nonlinear parabolic equations with singular lower order term”, Nonlinear Analysis, 56 (2004), 185–199 | DOI | MR | Zbl

[9] S. N. Dimova, M. S. Kastchiev, M. G. Koleva, D. P. Vasileva, “Numerical analysis of the blow-up regimes of combustion of two-component nonlinear heat-conducting medium”, Journal of applied mathematics and mathematical physics, 35:3 (1995), 303–319 | MR | Zbl

[10] B. H. Gilding, L. A. Pelletier, “On a class of similarity of the porous media equation, 2”, J. Math. Anal. and Appl., 57 (1977), 522–538 | DOI | MR | Zbl

[11] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhajlov, Blow-up in quasilinear parabolic equations, v. 4, Walter de Grueter, Berlin, 1995 | Zbl

[12] S. P. Kurdyumov, E. S. Kurkina, O. V. Telkovskaya, “Regimes with sharpening in two-component media”, Matem. Mod., 1:1 (1989), 34–50 | MR | Zbl

[13] B. P. Demidovich, Lectures on mathematical theory of stability, Nauka, M., 1967 (in Russian) | MR