Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2016_9_1_a9, author = {Shahlo A. Sadullaeva}, title = {Numerical investigation of solutions to a reaction-diffusion system with variable density}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {90--101}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a9/} }
TY - JOUR AU - Shahlo A. Sadullaeva TI - Numerical investigation of solutions to a reaction-diffusion system with variable density JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2016 SP - 90 EP - 101 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a9/ LA - en ID - JSFU_2016_9_1_a9 ER -
%0 Journal Article %A Shahlo A. Sadullaeva %T Numerical investigation of solutions to a reaction-diffusion system with variable density %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2016 %P 90-101 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a9/ %G en %F JSFU_2016_9_1_a9
Shahlo A. Sadullaeva. Numerical investigation of solutions to a reaction-diffusion system with variable density. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 90-101. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a9/
[1] M. Aripov, Sh. A. Sadullaeva, “To solutions of one nondivergent type parabolic equation with double nonlinearity”, Advances and Progress in Analysis, 2010, 1–18
[2] M. Aripov, Sh. A. Sadullaeva, “To properties of the equation of reaction diffusion with double nonlinearity and distributed parameters”, Journal of Sibirian Federal University. Mathematics $\$ Physics, 6 (2013), 157–167
[3] M. Aripov, “Approximate self-similar approach for solving of quasilinear parabolic equation”, Experimentation, Modeling and Computation in Flow, Turbulence and Combustion, v. 2, Wiley, 1997, 19–26 | Zbl
[4] M. Aripov, “Asymptotic of the solution of the non-Newton polytropical filtration equation”, Zeitschrift fur Angewandte Mathematik und Mechanik, 80:3 (2000), 767–768
[5] M. Aripov, J. Muhammadiev, “Asymptotic behavior of automodel solutions for one system of quasilinear equations of parabolic type”, Buletin Stiintific-Universitatea din Pitesti, Seria Matematica i Informatica, 3 (1999), 19–40
[6] M. Aripov, Method of the standard equation for the solution of the nonlinear value problem, Fan, Tashkent, 1988
[7] R. Kersner, J. Reyes, A. Tesei, “One a class of nonlinear parabolic equations with variable density and absorption advances”, Diff. Equations, 7 (2002), 15–176 | MR
[8] I. Kombe, “Double nonlinear parabolic equations with singular lower order term”, Nonlinear Analysis, 56 (2004), 185–199 | DOI | MR | Zbl
[9] S. N. Dimova, M. S. Kastchiev, M. G. Koleva, D. P. Vasileva, “Numerical analysis of the blow-up regimes of combustion of two-component nonlinear heat-conducting medium”, Journal of applied mathematics and mathematical physics, 35:3 (1995), 303–319 | MR | Zbl
[10] B. H. Gilding, L. A. Pelletier, “On a class of similarity of the porous media equation, 2”, J. Math. Anal. and Appl., 57 (1977), 522–538 | DOI | MR | Zbl
[11] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhajlov, Blow-up in quasilinear parabolic equations, v. 4, Walter de Grueter, Berlin, 1995 | Zbl
[12] S. P. Kurdyumov, E. S. Kurkina, O. V. Telkovskaya, “Regimes with sharpening in two-component media”, Matem. Mod., 1:1 (1989), 34–50 | MR | Zbl
[13] B. P. Demidovich, Lectures on mathematical theory of stability, Nauka, M., 1967 (in Russian) | MR