On invariant estimates for oscillatory integrals with polynomial phase
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 102-107

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider estimates for trigonometric (oscillatory) integrals with polynomial phase function of degree three. The main result of the paper is the theorem on uniform invariant estimates for trigonometric integrals. This estimate improves results obtained in the paper by D. A. Popov [1] for the case when the phase function is a sum of a homogeneous polynomial of third degree and a linear function, as well as the estimates of the paper [2] for the fundamental solution to the dispersion equation of third order.
Keywords: oscillatory integral, phase function
Mots-clés : amplitude, invariant, discriminant.
@article{JSFU_2016_9_1_a10,
     author = {Akbar R. Safarov},
     title = {On invariant estimates for oscillatory integrals with polynomial phase},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {102--107},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a10/}
}
TY  - JOUR
AU  - Akbar R. Safarov
TI  - On invariant estimates for oscillatory integrals with polynomial phase
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 102
EP  - 107
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a10/
LA  - en
ID  - JSFU_2016_9_1_a10
ER  - 
%0 Journal Article
%A Akbar R. Safarov
%T On invariant estimates for oscillatory integrals with polynomial phase
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 102-107
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a10/
%G en
%F JSFU_2016_9_1_a10
Akbar R. Safarov. On invariant estimates for oscillatory integrals with polynomial phase. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 102-107. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a10/