On invariant estimates for oscillatory integrals with polynomial phase
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 102-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider estimates for trigonometric (oscillatory) integrals with polynomial phase function of degree three. The main result of the paper is the theorem on uniform invariant estimates for trigonometric integrals. This estimate improves results obtained in the paper by D. A. Popov [1] for the case when the phase function is a sum of a homogeneous polynomial of third degree and a linear function, as well as the estimates of the paper [2] for the fundamental solution to the dispersion equation of third order.
Keywords: oscillatory integral, phase function
Mots-clés : amplitude, invariant, discriminant.
@article{JSFU_2016_9_1_a10,
     author = {Akbar R. Safarov},
     title = {On invariant estimates for oscillatory integrals with polynomial phase},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {102--107},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a10/}
}
TY  - JOUR
AU  - Akbar R. Safarov
TI  - On invariant estimates for oscillatory integrals with polynomial phase
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2016
SP  - 102
EP  - 107
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a10/
LA  - en
ID  - JSFU_2016_9_1_a10
ER  - 
%0 Journal Article
%A Akbar R. Safarov
%T On invariant estimates for oscillatory integrals with polynomial phase
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2016
%P 102-107
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a10/
%G en
%F JSFU_2016_9_1_a10
Akbar R. Safarov. On invariant estimates for oscillatory integrals with polynomial phase. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 9 (2016) no. 1, pp. 102-107. http://geodesic.mathdoc.fr/item/JSFU_2016_9_1_a10/

[1] D. A. Popov, “Note on combained uniform estimates for oscillating integrals with simple singularyties”, Izv. RAN, 72:4 (2008), 173–196 (in Russian) | DOI | MR | Zbl

[2] M. Ben-Artzi, H. Koch, J.-C. Saut, “Dispersion Estimates for third order equations in two dimensions”, Comm. Partial Differential Equations, 28:11–12 (2003), 1943–1974 | DOI | MR | Zbl

[3] I. A. Ikromov, “Invariant estimates of two-dimentional trigonometrical integrals”, Matem. Sb. USSR, 67:2 (1990), 473–488 | DOI | MR | Zbl

[4] D. A. Popov, “Estimates with constants for some classes of oscillatory integrals”, Russian Math. Surveys, 52:1 (1997), 73–145 | DOI | MR | Zbl

[5] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren der Mathematichen Wissenschaften, 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 | MR | Zbl

[6] G. B. Gurevich, Foundations of the theory of algebraic invariants, Noordhoff, 1964 | MR | Zbl

[7] J. Duistermaat, “Oscillatory integrals Lagrange immersions and unifoldings of singularities”, Comm. Pure. Appl. Math., 27:2 (1974), 207–281 | DOI | MR | Zbl

[8] A. Safarov, “On uniform estimates for model trigonometrical integrals with discontinuous amplitude”, Uzbek. Mat. Zhurnal, 2015 (in Russian)

[9] S. Aronhold, “Zur Theorie der homogenen Functionen dritten Grades von drei Variabeln”, J. Reine Angew. Math., 39 (1850), 140–159 | DOI | MR | Zbl

[10] S. N. Bernstein, Extrenal properties of polynomials, ONTI, M., 1937 (in Russian)

[11] A. Clebsch, P. Gordan, “Uber cubische-ternäre Formen”, Mathematische Annalen, 6 (1873), 436–512 | DOI | MR

[12] V. P. Palamodov, “Deformations of Hopf manifolds and the Poincaré–Dulac theorem”, Funktional. Anal. Appl., 17:4 (1983), 252–259 | DOI | MR | Zbl

[13] I. A. Ikromov, A. Safarov, “Invariant estimates for oscillatory integral with homogeneous polynomial”, Vestnik Bashkirskogo Universiteta, 19:3 (2014), 774–779 (in Russian)