Localization of solutions of the equations of filtration in poroelastic medium
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 467-477.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of equations of 1D non-stationary fluid motion in poroelastic medium is considered. Localization of solutions of the equations has been established by the integral energy estimates method.
Keywords: Darcy's law, poroelasticity, localization, metastable localization.
Mots-clés : filtration
@article{JSFU_2015_8_4_a9,
     author = {Margarita A. Tokareva},
     title = {Localization of solutions of the equations of filtration in poroelastic medium},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {467--477},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a9/}
}
TY  - JOUR
AU  - Margarita A. Tokareva
TI  - Localization of solutions of the equations of filtration in poroelastic medium
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 467
EP  - 477
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a9/
LA  - en
ID  - JSFU_2015_8_4_a9
ER  - 
%0 Journal Article
%A Margarita A. Tokareva
%T Localization of solutions of the equations of filtration in poroelastic medium
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 467-477
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a9/
%G en
%F JSFU_2015_8_4_a9
Margarita A. Tokareva. Localization of solutions of the equations of filtration in poroelastic medium. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 467-477. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a9/

[1] C. Morency, R. S. Huismans, C. Beaumont, P. Fullsack, “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”, Journal of Geophysical Research, 112 (2007), B10407 | DOI

[2] J. A. D. Connolly, Y. Y. Podladchikov, “Compaction-driven fluid flow in viscoelastic rock”, Geodin. Acta, 11 (1998), 55–84 | DOI

[3] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972 | Zbl

[4] A. A. Papin, M. A. Tokareva, “The Problem of Motion of a Compressible Fluid in a Deformable Rock”, Izvestiya Altaiskogo Gosudarstvennogo Universiteta, 72:1/2 (2011), 36–43 (in Russian)

[5] A. A. Papin, M. A. Tokareva, “Dynamics of melting deformable snow-ice cover”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 12:4 (2012), 107–113 (in Russian) | Zbl

[6] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary-Value Problems of the Mechanics of Inhomogeneous Fluids, Nauka, Sibirskoe Otdelenie, Novosibirsk, 1983 (in Russian) | MR | Zbl

[7] S. N. Antontsev, J. I. Diaz, S. Shmarev, Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics, Progress in Nonlinear Differential Equations and Their Applications, 48, Washington D. C., 2002, 331 pp. | MR | Zbl

[8] A. Favini, G. Marinoschi, Degenerate Nonlinear Diffusion Equations, Springer, 2012, 143 pp. | MR | Zbl

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (in Russian) | Zbl

[10] S. N. Antontsev, A. A. Papin, “Localization of solutions of equations of a viscous gas, with viscosity depending on the density”, Dinamika Sploshnoy Sredy, 82, Novosibirsk, 1988, 24–40 (in Russian) | MR

[11] S. N. Antontsev, Localization of solutions of degenerate equations of continuum mechanics, Akademiya Nauk SSSR Sibirskoe Otdelenie Instituta Gidrodinamiki, Novosibirsk, 1986 (in Russian) | MR

[12] S. N. Antontsev, “Metastable localization of solutions of degenerate parabolic equations of general form”, Dinamika Sploshnoy Sredy, 83, Novosibirsk, 1987, 138–144 (in Russian) | MR | Zbl