On the correctness of polynomial difference operators
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 437-441.

Voir la notice de l'article provenant de la source Math-Net.Ru

The correctness Cauchy problem is explored for a polynomial difference operator. The easily verifiable sufficient condition correctness for the Cauchy problem for a polynomial difference operator with constant coefficients is proved whose characteristic polynomial is homogeneous.
Keywords: polynomial difference operator, Cauchy problem, correctness.
@article{JSFU_2015_8_4_a6,
     author = {Marina S. Rogozina},
     title = {On the correctness of polynomial difference operators},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {437--441},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a6/}
}
TY  - JOUR
AU  - Marina S. Rogozina
TI  - On the correctness of polynomial difference operators
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 437
EP  - 441
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a6/
LA  - en
ID  - JSFU_2015_8_4_a6
ER  - 
%0 Journal Article
%A Marina S. Rogozina
%T On the correctness of polynomial difference operators
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 437-441
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a6/
%G en
%F JSFU_2015_8_4_a6
Marina S. Rogozina. On the correctness of polynomial difference operators. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 437-441. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a6/

[1] R. Stanley, Enumerative Combinatorics, Cambridge University Press, 1999 | MR

[2] R. J. Duffin, “Basic Properties of Discrete Analytic Functions”, Duke Math. J., 23 (1956), 335–363 | DOI | MR | Zbl

[3] R. J. Duffin, “Potential theory on rhombic lattice”, J. Combinatorial Theory, 5 (1968), 258–272 | DOI | MR | Zbl

[4] O. A. Danilov, “Lagrange Interpolating Formula for Discrete Analytic Function”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 8:4 (2008), 33–39 (in Russian) | MR | Zbl

[5] O. A. Danilov, A. D. Mednykh, “Discrete Analytical Functions of Several Variables and Taylor Expansion”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 9:2 (2009), 38–46 (in Russian) | MR | Zbl

[6] A. A. Samarskii, Introduction to the theory of differential circuits, Nauka, M., 1971 | MR

[7] V. S. Ryaben'kii, On the stability of difference equations, Gos. izd. tekhniko-teoreticheskoj literatury, M., 1956 | MR

[8] D. Dudgeon, R. Mersereau, Multidimensional Digital Signal Processing, First Edition, Prentice-Hall, 1983

[9] R. Izerman, Digital Control Systems, Springer-Verlag, 1981

[10] M. S. Rogozina, “Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces”, Journal of Siberian Federal University. Mathematics Physics, 5:2 (2012), 256–263 (in Russian)

[11] E. K. Leinartas, M. S. Rogozina, “Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring”, Sib. Math. J., 56:1 (2015), 92–100 | DOI | MR | Zbl

[12] E. K. Leinartas, “Multiple Laurent Series and Difference Equations”, Sib. Math. J., 45:2 (2004), 321–326 | DOI | MR

[13] M. S. Rogozina, “On the solvability of the Cauchy problem for a polynomial difference operator”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 14:3 (2014), 83–94 (in Russian)