On the structure of the classical discriminant
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 426-436
Cet article a éte moissonné depuis la source Math-Net.Ru
Consider a general polynomial of degree $n$ with variable coefficients. It is known that the Newton polytope of its discriminant is combinatorially equivalent to an $(n-1)$-dimensional cube. We show that two facets of this Newton polytope are prisms, and that truncations of the discriminant with respect to facets factor into discriminants of polynomials of smaller degree.
Keywords:
general algebraic equation, Newton polytope.
Mots-clés : discriminant
Mots-clés : discriminant
@article{JSFU_2015_8_4_a5,
author = {Evgeny N. Mikhalkin and Avgust K. Tsikh},
title = {On the structure of the classical discriminant},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {426--436},
year = {2015},
volume = {8},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a5/}
}
TY - JOUR AU - Evgeny N. Mikhalkin AU - Avgust K. Tsikh TI - On the structure of the classical discriminant JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 426 EP - 436 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a5/ LA - en ID - JSFU_2015_8_4_a5 ER -
Evgeny N. Mikhalkin; Avgust K. Tsikh. On the structure of the classical discriminant. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 426-436. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a5/
[1] I. A. Antipova, A. K. Tsikh, “The discriminant locus of a sistem of $n$ Laurent polynomials in $n$ variables”, Izv. Math., 76:5 (2012), 881–906 | DOI | MR | Zbl
[2] E. N. Mikhalkin, A. K. Tsikh, “Singular strata of cuspidal type for the classical discriminant”, Sb. Math., 206:2 (2015), 282–310 | DOI | MR | Zbl
[3] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl
[4] M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The legacy of Niels Henrik Abel, Springer, Berlin–Heidelberg–New York, 2004, 653–672 | DOI | MR | Zbl