On the structure of the classical discriminant
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 426-436.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a general polynomial of degree $n$ with variable coefficients. It is known that the Newton polytope of its discriminant is combinatorially equivalent to an $(n-1)$-dimensional cube. We show that two facets of this Newton polytope are prisms, and that truncations of the discriminant with respect to facets factor into discriminants of polynomials of smaller degree.
Keywords: general algebraic equation, Newton polytope.
Mots-clés : discriminant
@article{JSFU_2015_8_4_a5,
     author = {Evgeny N. Mikhalkin and Avgust K. Tsikh},
     title = {On the structure of the classical discriminant},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {426--436},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a5/}
}
TY  - JOUR
AU  - Evgeny N. Mikhalkin
AU  - Avgust K. Tsikh
TI  - On the structure of the classical discriminant
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 426
EP  - 436
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a5/
LA  - en
ID  - JSFU_2015_8_4_a5
ER  - 
%0 Journal Article
%A Evgeny N. Mikhalkin
%A Avgust K. Tsikh
%T On the structure of the classical discriminant
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 426-436
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a5/
%G en
%F JSFU_2015_8_4_a5
Evgeny N. Mikhalkin; Avgust K. Tsikh. On the structure of the classical discriminant. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 426-436. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a5/

[1] I. A. Antipova, A. K. Tsikh, “The discriminant locus of a sistem of $n$ Laurent polynomials in $n$ variables”, Izv. Math., 76:5 (2012), 881–906 | DOI | MR | Zbl

[2] E. N. Mikhalkin, A. K. Tsikh, “Singular strata of cuspidal type for the classical discriminant”, Sb. Math., 206:2 (2015), 282–310 | DOI | MR | Zbl

[3] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[4] M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The legacy of Niels Henrik Abel, Springer, Berlin–Heidelberg–New York, 2004, 653–672 | DOI | MR | Zbl