On solvability of one class of nonlinear integral-differential equation with Hammerstein non-compact operator arising in a theory of income distribution
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 416-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

In present paper we investigate a class of nonlinear integral-differential equation with Hammerstein noncompact operator which has direct application in a theory of income distribution. We prove solvability of the class of equations in special weighted Sobolev space. The results of numerical calculations are also presented.
Keywords: Hammerstein operator, weighted Sobolev space, iteration, Caratheodory's condition.
Mots-clés : monotony
@article{JSFU_2015_8_4_a4,
     author = {Aghavard Kh. Khachatryan and Khachatur A. Khachatryan and Tigran H. Sardaryan},
     title = {On solvability of one class of nonlinear integral-differential equation with {Hammerstein} non-compact operator arising in a theory of income distribution},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {416--425},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a4/}
}
TY  - JOUR
AU  - Aghavard Kh. Khachatryan
AU  - Khachatur A. Khachatryan
AU  - Tigran H. Sardaryan
TI  - On solvability of one class of nonlinear integral-differential equation with Hammerstein non-compact operator arising in a theory of income distribution
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 416
EP  - 425
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a4/
LA  - en
ID  - JSFU_2015_8_4_a4
ER  - 
%0 Journal Article
%A Aghavard Kh. Khachatryan
%A Khachatur A. Khachatryan
%A Tigran H. Sardaryan
%T On solvability of one class of nonlinear integral-differential equation with Hammerstein non-compact operator arising in a theory of income distribution
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 416-425
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a4/
%G en
%F JSFU_2015_8_4_a4
Aghavard Kh. Khachatryan; Khachatur A. Khachatryan; Tigran H. Sardaryan. On solvability of one class of nonlinear integral-differential equation with Hammerstein non-compact operator arising in a theory of income distribution. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 416-425. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a4/

[1] I. D. Sargan, “The distribution of wealth”, Econometrics, 25:4 (1957), 568–590 | DOI | MR | Zbl

[2] A. Kh. Khachatryan, Kh. A. Khachatryan, “On the solvability of a nonlinear integro-differential equation arising in the income distribution problem”, Computational Mathematics and Mathematical Physics, 50:10 (2010), 1702–1711 | DOI | MR | Zbl

[3] B. Mandelbrot, “The Pareto–Levy law and distribution of income”, International Econ. Rev., 1:2 (1960), 79–106 | DOI | Zbl

[4] V. M. Kakhktsyan, A. Kh. Khachatryan, “Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics”, Computational Mathematics and Mathematical Physics, 53:7 (2013), 933–936 | DOI | MR | Zbl

[5] A. Khachatryan, Kh. Khachatryan, “On solvability of a nonlinear problem in theory of income distribution”, Eurasian Mathematical Journal, 2:2 (2011), 75–88 | MR | Zbl

[6] Kh. A. Khachatryan, “On the solvability of an initial-boundary value problem for a nonlinear integro-differential equation with a noncompact operator of Hammerstein type”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 308–315 (in Russian) | MR

[7] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Paperback, 1999