Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_4_a4, author = {Aghavard Kh. Khachatryan and Khachatur A. Khachatryan and Tigran H. Sardaryan}, title = {On solvability of one class of nonlinear integral-differential equation with {Hammerstein} non-compact operator arising in a theory of income distribution}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {416--425}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a4/} }
TY - JOUR AU - Aghavard Kh. Khachatryan AU - Khachatur A. Khachatryan AU - Tigran H. Sardaryan TI - On solvability of one class of nonlinear integral-differential equation with Hammerstein non-compact operator arising in a theory of income distribution JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 416 EP - 425 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a4/ LA - en ID - JSFU_2015_8_4_a4 ER -
%0 Journal Article %A Aghavard Kh. Khachatryan %A Khachatur A. Khachatryan %A Tigran H. Sardaryan %T On solvability of one class of nonlinear integral-differential equation with Hammerstein non-compact operator arising in a theory of income distribution %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 416-425 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a4/ %G en %F JSFU_2015_8_4_a4
Aghavard Kh. Khachatryan; Khachatur A. Khachatryan; Tigran H. Sardaryan. On solvability of one class of nonlinear integral-differential equation with Hammerstein non-compact operator arising in a theory of income distribution. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 416-425. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a4/
[1] I. D. Sargan, “The distribution of wealth”, Econometrics, 25:4 (1957), 568–590 | DOI | MR | Zbl
[2] A. Kh. Khachatryan, Kh. A. Khachatryan, “On the solvability of a nonlinear integro-differential equation arising in the income distribution problem”, Computational Mathematics and Mathematical Physics, 50:10 (2010), 1702–1711 | DOI | MR | Zbl
[3] B. Mandelbrot, “The Pareto–Levy law and distribution of income”, International Econ. Rev., 1:2 (1960), 79–106 | DOI | Zbl
[4] V. M. Kakhktsyan, A. Kh. Khachatryan, “Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics”, Computational Mathematics and Mathematical Physics, 53:7 (2013), 933–936 | DOI | MR | Zbl
[5] A. Khachatryan, Kh. Khachatryan, “On solvability of a nonlinear problem in theory of income distribution”, Eurasian Mathematical Journal, 2:2 (2011), 75–88 | MR | Zbl
[6] Kh. A. Khachatryan, “On the solvability of an initial-boundary value problem for a nonlinear integro-differential equation with a noncompact operator of Hammerstein type”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 308–315 (in Russian) | MR
[7] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Paperback, 1999