Antiplane axisymmetric creep deformation of incompressible medium
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 406-415.

Voir la notice de l'article provenant de la source Math-Net.Ru

Flow of incompressible medium under varying gradient of pressure is considered. It is assumed that medium exhibits nonlinear elastic and creep behavior. The theory of large strains based on transport equations for the tensors of reversible and irreversible deformations is used for problem formulation. Analytical and numerical methods are applied to solve the problem.
Keywords: large strain, elasticity, creep, springback.
@article{JSFU_2015_8_4_a3,
     author = {Sergey N. Firsov and Aleksandr N. Prokudin},
     title = {Antiplane axisymmetric creep deformation of incompressible medium},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {406--415},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a3/}
}
TY  - JOUR
AU  - Sergey N. Firsov
AU  - Aleksandr N. Prokudin
TI  - Antiplane axisymmetric creep deformation of incompressible medium
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 406
EP  - 415
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a3/
LA  - en
ID  - JSFU_2015_8_4_a3
ER  - 
%0 Journal Article
%A Sergey N. Firsov
%A Aleksandr N. Prokudin
%T Antiplane axisymmetric creep deformation of incompressible medium
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 406-415
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a3/
%G en
%F JSFU_2015_8_4_a3
Sergey N. Firsov; Aleksandr N. Prokudin. Antiplane axisymmetric creep deformation of incompressible medium. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 4, pp. 406-415. http://geodesic.mathdoc.fr/item/JSFU_2015_8_4_a3/

[1] Yu. N. Rabotnov, Deformable solid mechanics, Nauka, M., 1988 (in Russian)

[2] G. P. Cherepanov, “An elastic-plastic problem under conditions of antiplanar deformation”, Journal of Applied Mathematics and Mechanics, 26:4 (1962), 1040–1057 | DOI | MR | Zbl

[3] B. D. Annin, V. D. Bondar, “Antiplane strain in a nonlinearly elastic incompressible body”, Journal of Applied Mechanics and Technical Physics, 47:6 (2006), 849–856 | DOI | MR | Zbl

[4] V. D. Bondar, “Antiplane strain of a body undergoing large-rotations”, Journal of Applied Mechanics and Technical Physics, 48:3 (2007), 460–466 | DOI | MR | Zbl

[5] V. D. Bondar, “Elastoplastic antiplane strain in an incompressible body”, Journal of Applied Mechanics and Technical Physics, 55:1 (2014), 19–29 | DOI | MR | Zbl

[6] A. A. Burenin, L. V. Kovtanyuk, A. L. Mazelis, “Development of a rectilinear axisymmetric viscoplastic flow and elastic aftereffect after its stop”, Journal of Applied Mechanics and Technical Physics, 51:2 (2010), 261–268 | DOI | MR | Zbl

[7] A. A. Burenin, L. V. Kovtanyuk, “The development and deceleration of the flow of an elastoplastic medium in a cylindrical tube”, Journal of Applied Mathematics and Mechanics, 77:5 (2013), 566–572 | DOI | MR

[8] A. A. Burenin, G. I. Bykovtsev, L. V. Kovtanyuk, “A simple model of finite strain in an elastoplastic medium”, Doklady Physics, 41:3 (1996), 127–129 | Zbl

[9] A. A. Burenin, L. V. Kovtanyuk, Large irreversible strains end elastic aftereffect, Dalnauka, Vladivostok, 2013 (in Russian)

[10] F. N. Norton, The Creep of Steel at High Temperature, McGraw-Hill, New York, 1929

[11] A. I. Lurie, Theory of Elasticity, Springer, Berlin, 2005