Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_3_a4, author = {Alexander M. Kytmanov and Simona G. Myslivets}, title = {Holomorphic extension of continuous functions along finite families of~complex lines in a ball}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {291--302}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a4/} }
TY - JOUR AU - Alexander M. Kytmanov AU - Simona G. Myslivets TI - Holomorphic extension of continuous functions along finite families of~complex lines in a ball JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 291 EP - 302 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a4/ LA - en ID - JSFU_2015_8_3_a4 ER -
%0 Journal Article %A Alexander M. Kytmanov %A Simona G. Myslivets %T Holomorphic extension of continuous functions along finite families of~complex lines in a ball %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 291-302 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a4/ %G en %F JSFU_2015_8_3_a4
Alexander M. Kytmanov; Simona G. Myslivets. Holomorphic extension of continuous functions along finite families of~complex lines in a ball. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 291-302. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a4/
[1] M. L. Agranovskii, R. E. Valskii, “Maximality of invariant algebras of functions”, Sib. Math. J., 12:1 (1971), 1–7 | MR
[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | MR
[3] L. A. Aizenberg, A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Amer. Mat. Soc., Providence, 1981
[4] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | MR | Zbl
[5] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | MR | Zbl
[6] A. M. Kytmanov, S. G. Myslivets, “On the families of complex lines, sufficient for holomorphic continuation”, Mat. Notes, 83:4 (2008), 545–551 | MR | Zbl
[7] A. M. Kytmanov, S. G. Myslivets, V. I. Kuzovatov, “Families of complex lines of the minimal dimension, sufficient for holomorphic continuation of functions”, Sib. Math. J., 52:2 (2011), 256–266 | MR | Zbl
[8] M. Agranovsky, “Propagation of boundary $CR$-foliations and Morera type theorems for manifolds with attached analytic discs”, Advances in Math., 211:1 (2007), 284–326 | MR | Zbl
[9] M. Agranovsky, “Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of $\mathbb C^n$”, Journal d'Analyse Mathematique, 13:1 (2011), 293–304 | MR
[10] L. Baracco, “Holomorphic extension from the sphere to the ball”, Journal of Mathematical Analysis and Applications, 388:2 (2012), 760–762 | MR | Zbl
[11] J. Globevnik, “Small families of complex lines for testing holomorphic extendibility”, Amer. J. of Math., 134 (2012), 1473–1490 | MR | Zbl
[12] L. Baracco, “Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball”, Amer. J. of Math., 135 (2013), 493–497 | MR | Zbl
[13] J. Globevnik, “Meromorphic extensions from small families of circles and holomorphic extensions from spheres”, Trans. Amer. Math. Soc., 364 (2012), 5857–5880 | MR | Zbl
[14] A. M. Kytmanov, S. G. Myslivets, “Holomorphic Continuation of Functions Along Finite Families of Complex Lines in the Ball”, Journal of Siberian Federal University. Mathematics Physics, 5 (2012), 547–557 (in Russian)
[15] A. M. Kytmanov, S. G. Myslivets, “An Analogue of the Hartogs Theorem in a Ball of $\mathbb C^n$”, Mathematische Nachrichten, 288 (2015), 224–234 | MR | Zbl
[16] A. M. Kytmanov, The Bochner–Martinelli integral and its applications, Birkhäuser, Basel–Boston–Berlin, 1995 | MR | Zbl
[17] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, Berlin–Heidelberg–New-York, 1980 | MR