Holomorphic extension of continuous functions along finite families of~complex lines in a ball
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 291-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider continuous functions given on the boundary of a ball $B$ of $\mathbb C^n$, $n>1$, and having one-dimensional property of holomorphic extension along the families of complex lines, passing through finite number of points of $B$. We prove the existence of holomorphic extension of such functions in the ball $B$.
Keywords: holomorphic extension, complex lines.
Mots-clés : Poisson kernel
@article{JSFU_2015_8_3_a4,
     author = {Alexander M. Kytmanov and Simona G. Myslivets},
     title = {Holomorphic extension of continuous functions along finite families of~complex lines in a ball},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {291--302},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a4/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Simona G. Myslivets
TI  - Holomorphic extension of continuous functions along finite families of~complex lines in a ball
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 291
EP  - 302
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a4/
LA  - en
ID  - JSFU_2015_8_3_a4
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Simona G. Myslivets
%T Holomorphic extension of continuous functions along finite families of~complex lines in a ball
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 291-302
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a4/
%G en
%F JSFU_2015_8_3_a4
Alexander M. Kytmanov; Simona G. Myslivets. Holomorphic extension of continuous functions along finite families of~complex lines in a ball. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 291-302. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a4/

[1] M. L. Agranovskii, R. E. Valskii, “Maximality of invariant algebras of functions”, Sib. Math. J., 12:1 (1971), 1–7 | MR

[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | MR

[3] L. A. Aizenberg, A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Amer. Mat. Soc., Providence, 1981

[4] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | MR | Zbl

[5] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | MR | Zbl

[6] A. M. Kytmanov, S. G. Myslivets, “On the families of complex lines, sufficient for holomorphic continuation”, Mat. Notes, 83:4 (2008), 545–551 | MR | Zbl

[7] A. M. Kytmanov, S. G. Myslivets, V. I. Kuzovatov, “Families of complex lines of the minimal dimension, sufficient for holomorphic continuation of functions”, Sib. Math. J., 52:2 (2011), 256–266 | MR | Zbl

[8] M. Agranovsky, “Propagation of boundary $CR$-foliations and Morera type theorems for manifolds with attached analytic discs”, Advances in Math., 211:1 (2007), 284–326 | MR | Zbl

[9] M. Agranovsky, “Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of $\mathbb C^n$”, Journal d'Analyse Mathematique, 13:1 (2011), 293–304 | MR

[10] L. Baracco, “Holomorphic extension from the sphere to the ball”, Journal of Mathematical Analysis and Applications, 388:2 (2012), 760–762 | MR | Zbl

[11] J. Globevnik, “Small families of complex lines for testing holomorphic extendibility”, Amer. J. of Math., 134 (2012), 1473–1490 | MR | Zbl

[12] L. Baracco, “Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball”, Amer. J. of Math., 135 (2013), 493–497 | MR | Zbl

[13] J. Globevnik, “Meromorphic extensions from small families of circles and holomorphic extensions from spheres”, Trans. Amer. Math. Soc., 364 (2012), 5857–5880 | MR | Zbl

[14] A. M. Kytmanov, S. G. Myslivets, “Holomorphic Continuation of Functions Along Finite Families of Complex Lines in the Ball”, Journal of Siberian Federal University. Mathematics Physics, 5 (2012), 547–557 (in Russian)

[15] A. M. Kytmanov, S. G. Myslivets, “An Analogue of the Hartogs Theorem in a Ball of $\mathbb C^n$”, Mathematische Nachrichten, 288 (2015), 224–234 | MR | Zbl

[16] A. M. Kytmanov, The Bochner–Martinelli integral and its applications, Birkhäuser, Basel–Boston–Berlin, 1995 | MR | Zbl

[17] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, Berlin–Heidelberg–New-York, 1980 | MR