Carleman’s formula for a matrix polydisk
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 371-374
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work an integral formula for a matrix polydisk is obtained. For a function from the Hardy class it allows to recover its value at any interior point from its values on a part of the Shilov boundary.
Mots-clés :
Carleman's formula, matrix polydisc.
@article{JSFU_2015_8_3_a13,
author = {Bahodir A. Shoimkhulov and Jorabek T. Bozorov},
title = {Carleman{\textquoteright}s formula for a matrix polydisk},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {371--374},
year = {2015},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a13/}
}
TY - JOUR AU - Bahodir A. Shoimkhulov AU - Jorabek T. Bozorov TI - Carleman’s formula for a matrix polydisk JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 371 EP - 374 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a13/ LA - en ID - JSFU_2015_8_3_a13 ER -
Bahodir A. Shoimkhulov; Jorabek T. Bozorov. Carleman’s formula for a matrix polydisk. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 371-374. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a13/
[1] L. A. Aizenberg, Carleman's Formulas in Complex Analysis. Theory and Applications, Kluwer Acad. Publ., Basel–Heidelberg, 1993 | MR
[2] A. M. Kytmanov, T. N. Nikitina, “Analogs of Carleman's formula for classical domains”, Math. Notes, 45:3 (1989), 243–248 | MR | Zbl
[3] G. Khudayberganov, A. M. Kytmanov, B. A. Shoimkhulov, Complex Analysis in Matrix Domains, SFU, Krasnoyarsk, 2011 (in Russian)
[4] Hua Lo-Kéng, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, American Mathematical Soc., RI, 1963 | MR