Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 356-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a mathematical model describing small oscillations of a heterogeneous medium is considered. The medium consists of a partially perforated elastic material and a slightly viscous compressible fluid filling the pores. For the given model the corresponding homogenized problem is constructed by using the two-scale convergence method. The boundary conditions connecting equations of the homogenized model on the boundary between the continuous elastic material and the porous elastic material with fluid are found.
Keywords: homogenization, two-scale convergence, heterogeneous medium.
@article{JSFU_2015_8_3_a12,
     author = {Alexey S. Shamaev and Vladlena V. Shumilova},
     title = {Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {356--370},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a12/}
}
TY  - JOUR
AU  - Alexey S. Shamaev
AU  - Vladlena V. Shumilova
TI  - Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 356
EP  - 370
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a12/
LA  - en
ID  - JSFU_2015_8_3_a12
ER  - 
%0 Journal Article
%A Alexey S. Shamaev
%A Vladlena V. Shumilova
%T Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 356-370
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a12/
%G en
%F JSFU_2015_8_3_a12
Alexey S. Shamaev; Vladlena V. Shumilova. Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 356-370. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a12/

[1] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | MR | Zbl

[2] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | MR | Zbl

[3] G. Allaire, M. Briane, “Multiscale convergence and reitereted homogenization”, Proc. of Royal Soc. Edinburgh, 126A (1996), 297–342 | MR | Zbl

[4] D. Lukassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Intern. J. Pure and Appl. Math., 20:1 (2002), 35–86 | MR

[5] V. V. Zhikov, “On an extention of the method of two-scale convergence and its applications”, Mat. Sb., 191:7 (2000), 31–72 (in Russian) | MR | Zbl

[6] V. V. Zhikov, “Homogenization of elasticity problems on singular structures”, Izv. Ross. Akad. Nauk. Ser. Mat., 66:2 (2002), 81–148 (in Russian) | MR | Zbl

[7] G. Nguetseng, “Asimptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21:6 (1990), 1394–1414 | MR | Zbl

[8] R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed, I”, Nonlinear Analysis, 40:1 (2000), 185–212 | MR | Zbl

[9] Th. Clopeau, J. L. Ferrin, R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed, II”, Math. and Comput. Modelling, 33 (2001), 821–841 | MR | Zbl

[10] G. W. Clark, R. E. Showalter, “Two-scale convergence of a model for flow in a partially fissured medium”, Electronic J. Diff. Equations, 2 (1999), 1–20 | MR

[11] A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | MR | Zbl

[12] D. A. Kosmodem'yanskii, A. S. Shamaev, “Spectral properties of some problems in mechanics of strongly inhomogeneous media”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 44:6 (2009), 75–114 (in Russian) | MR

[13] A. S. Shamaev, V. V. Shumilova, “Averaging the acoustic equations for a viscoelastic material with channels filled with a viscous compressible fluid”, Izv. Ross. Akad. Nauk. Mekh. Zhidk. i Gaza, 46:2 (2011), 92–103 (in Russian) | MR | Zbl

[14] A. S. Shamaev, V. V. Shumilova, “Homogenization of the acoustic equations for a porous long-memory viscoelastic material filled with a viscous fluid”, Diffirentsialnye Uravneniya, 48:8 (2012), 1174–1186 (in Russian) | MR | Zbl

[15] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer, 1980 | MR | Zbl

[16] Ya. I. Frenkel, “On the theory of seismic and seismoelectrical phenomena in a moist soil”, Izv. Acad. Nauk SSSR. Ser. Geogr. Geofiz., 8:4 (1944), 133–150 (in Russian) | MR | Zbl

[17] M. A. Biot, “Mechanics of deformation and acoustic propagation in porous media”, J. Applied Physics, 33:4 (1962), 1482–1498 | MR | Zbl

[18] G. A. Chechkin, A. L. Piatnitski, A. S. Shamaev, Homogenization: Methods and Applications, Translations of Mathematical Monographs, 234, AMS, Providence, RI, 2007 | MR | Zbl

[19] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 | MR | Zbl

[20] L. R. Volevich, “Solvability of boundary value problems for general elliptic systems”, Mat. Sb., 68:3 (1965), 373–416 (in Russian) | MR | Zbl