Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_3_a10, author = {Sergey I. Senashov and Alexander V. Kondrin and Olga N. Cherepanova}, title = {On elastoplastic torsion of a rod with multiply connected cross-section}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {343--351}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a10/} }
TY - JOUR AU - Sergey I. Senashov AU - Alexander V. Kondrin AU - Olga N. Cherepanova TI - On elastoplastic torsion of a rod with multiply connected cross-section JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 343 EP - 351 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a10/ LA - en ID - JSFU_2015_8_3_a10 ER -
%0 Journal Article %A Sergey I. Senashov %A Alexander V. Kondrin %A Olga N. Cherepanova %T On elastoplastic torsion of a rod with multiply connected cross-section %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 343-351 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a10/ %G en %F JSFU_2015_8_3_a10
Sergey I. Senashov; Alexander V. Kondrin; Olga N. Cherepanova. On elastoplastic torsion of a rod with multiply connected cross-section. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 343-351. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a10/
[1] S. I. Senashov, O. N. Cherepanova, A. V. Kondrin, “On elastoplastic torsion rod”, Vestnik SibGAU, 49:3 (2013), 100–103 (in Russian)
[2] S. I. Senashov, O. N. Cherepanova, A. V. Kondrin, E. V. Filushina, The calculation of the stress state in the interior of elastic-plastic rod of constant cross section, Certificate of state registration of the computer 013618484
[3] S. I. Senashov, O. N. Cherepanova, A. V. Kondrin, A. N. Yahno, E. V. Filushina, Building elastoplastic boundary problems arising in torsion rod with a rectangular cross section of rectangular shape, Certificate of state registration of the computer 20146616472
[4] B. D. Anin, G. P. Cherepanov, Elastic-plastic problem, Nauka, Novosibirsk, 1983 (in Russian)
[5] P. P. Kiryakov, S. I. Senashov, A. N. Yahno, Application symmetries and conservation laws to solving differential equations, Izdatelstvo SO RAN, Novosibirsk, 2001 (in Russian)
[6] S. I. Senashov, A. N. Yachno, “Conservation Laws, Hodograph Transformaition and Boundary Value Problems of Plane Plasticity”, SIGMA, 8 (2012), 071 | MR | Zbl
[7] S. I. Senashov, “Conservation laws in the problem of the longitudinal plane wave loads in elastic-plastic rod”, Vestnik SibGAU, 36:3 (2011), 82–85 (in Russian)