On elastoplastic torsion of a rod with multiply connected cross-section
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 343-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical problem of torsion of a straight rod with convex contour of the cross-section is considered in the paper. The cross-section is multiply connected domain. It is assumed that the region of plastic deformation occupies the whole outer boundary. To solve the problem the conservation laws are used. In the case when the boundary is piecewise smooth the solution is found in explicit form. Computer programs that allow one to find the elastic-plastic boundary in a rod under torsion with any precision are developed. Examples of calculation of elastic-plastic boundaries from presented analytical formulas are given. The obtained results are in good agreement in comparison with known solutions and experimental data.
Keywords: conservation laws, unknown boundary, torsion problem of straight rod, multiply connected cross-section.
Mots-clés : exact solution
@article{JSFU_2015_8_3_a10,
     author = {Sergey I. Senashov and Alexander V. Kondrin and Olga N. Cherepanova},
     title = {On elastoplastic torsion of a rod with multiply connected cross-section},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {343--351},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a10/}
}
TY  - JOUR
AU  - Sergey I. Senashov
AU  - Alexander V. Kondrin
AU  - Olga N. Cherepanova
TI  - On elastoplastic torsion of a rod with multiply connected cross-section
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 343
EP  - 351
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a10/
LA  - en
ID  - JSFU_2015_8_3_a10
ER  - 
%0 Journal Article
%A Sergey I. Senashov
%A Alexander V. Kondrin
%A Olga N. Cherepanova
%T On elastoplastic torsion of a rod with multiply connected cross-section
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 343-351
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a10/
%G en
%F JSFU_2015_8_3_a10
Sergey I. Senashov; Alexander V. Kondrin; Olga N. Cherepanova. On elastoplastic torsion of a rod with multiply connected cross-section. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 343-351. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a10/

[1] S. I. Senashov, O. N. Cherepanova, A. V. Kondrin, “On elastoplastic torsion rod”, Vestnik SibGAU, 49:3 (2013), 100–103 (in Russian)

[2] S. I. Senashov, O. N. Cherepanova, A. V. Kondrin, E. V. Filushina, The calculation of the stress state in the interior of elastic-plastic rod of constant cross section, Certificate of state registration of the computer 013618484

[3] S. I. Senashov, O. N. Cherepanova, A. V. Kondrin, A. N. Yahno, E. V. Filushina, Building elastoplastic boundary problems arising in torsion rod with a rectangular cross section of rectangular shape, Certificate of state registration of the computer 20146616472

[4] B. D. Anin, G. P. Cherepanov, Elastic-plastic problem, Nauka, Novosibirsk, 1983 (in Russian)

[5] P. P. Kiryakov, S. I. Senashov, A. N. Yahno, Application symmetries and conservation laws to solving differential equations, Izdatelstvo SO RAN, Novosibirsk, 2001 (in Russian)

[6] S. I. Senashov, A. N. Yachno, “Conservation Laws, Hodograph Transformaition and Boundary Value Problems of Plane Plasticity”, SIGMA, 8 (2012), 071 | MR | Zbl

[7] S. I. Senashov, “Conservation laws in the problem of the longitudinal plane wave loads in elastic-plastic rod”, Vestnik SibGAU, 36:3 (2011), 82–85 (in Russian)