Two-dimensional motion of binary mixture such as Hiemenz in a flat layer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 260-272
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper considers solution of thermal diffusion equations in a special type, which describes two-dimensional motion of binary mixture in a flat channel. Substituting this solution to equations of motion and heat and mass transfer equations results initial-boundary problems for unknown functions as velocity, pressure, temperature and concentration. If assume that Reynolds number is small (creeping motion), these problems become linear. In addition, they are inverse since unsteady pressure gradient is also desired. Solution of the problem is obtained by using trigonometric Fourier series, which are rapidly convergent for any time value. Exact solution of the stationary and non-stationary problems is presented.
Keywords:
creeping motion, initial-boundary problem, stationary regime.
Mots-clés : thermal diffusion
Mots-clés : thermal diffusion
@article{JSFU_2015_8_3_a1,
author = {Nemat B. Darabi},
title = {Two-dimensional motion of binary mixture such as {Hiemenz} in a flat layer},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {260--272},
year = {2015},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a1/}
}
TY - JOUR AU - Nemat B. Darabi TI - Two-dimensional motion of binary mixture such as Hiemenz in a flat layer JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 260 EP - 272 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a1/ LA - en ID - JSFU_2015_8_3_a1 ER -
Nemat B. Darabi. Two-dimensional motion of binary mixture such as Hiemenz in a flat layer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 3, pp. 260-272. http://geodesic.mathdoc.fr/item/JSFU_2015_8_3_a1/
[1] A. D. Polyanin, A. M. Kutepov, A. V. Vyazmin, D. A. Kazenin, Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Topics in Chemical Engineering, 14, Taylor Francis, 2001
[2] K. Hiemenz, “The boundary layer on a submerged straight circular cylinder in the uniform liquid flow”, Dinglers Polytech Journal, 326 (1911), 321–440
[3] S. N. Aristov, D. V. Knyazev, A. D. Polyanin, “Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables”, Theoretical Foundations of Chemical Engineering, 5 (2009), 547–566 (in Russian)
[4] M. A. Lavrentiev, B. V. Shabat, Methods of Theory of Functions of Complex Variable, Nauka, M., 1973 (in Russian)