On the Cauchy problem for multidimensional difference equations in~rational cone
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 184-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for multidimensional difference equations in rational cone is formulated and sufficient condition for its solvability is given. The notion of multisection of multiple Laurent series with the support in a rational cone is defined. The formulae which express any multisection through original series are presented.
Keywords: Cauchy problem, rational cone, generating function
Mots-clés : multisection.
@article{JSFU_2015_8_2_a7,
     author = {Tatiana I. Nekrasova},
     title = {On the {Cauchy} problem for multidimensional difference equations in~rational cone},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {184--191},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a7/}
}
TY  - JOUR
AU  - Tatiana I. Nekrasova
TI  - On the Cauchy problem for multidimensional difference equations in~rational cone
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 184
EP  - 191
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a7/
LA  - en
ID  - JSFU_2015_8_2_a7
ER  - 
%0 Journal Article
%A Tatiana I. Nekrasova
%T On the Cauchy problem for multidimensional difference equations in~rational cone
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 184-191
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a7/
%G en
%F JSFU_2015_8_2_a7
Tatiana I. Nekrasova. On the Cauchy problem for multidimensional difference equations in~rational cone. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 184-191. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a7/

[1] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl

[2] R. F. Isaacs, “A Finite Difference Function Theory”, Univ. Nac. Tucuman. Revista A, 2 (1941), 177–201 | MR

[3] A. O. Gelfond, The calculus of finite differences, KomKniga, M., 2006 (in Russian)

[4] L. Hörmander, An introduction to complex analysis in several variables, 3 Ed., North Holland, 1990 | MR | Zbl

[5] J. Riordan, Combinatorial Identities, John Wiley and Sons, New-York, 1968 | MR | Zbl

[6] E. K. Leinartas, “Multiple Laurent series and fundamental solutions of linear difference equations”, Siberian Math. J., 48:2 (2007), 335–340 | DOI | MR

[7] E. K. Leinartas, “The stability of the Cauchy problem for the homogeneous difference operator and the amoeba of characteristic set”, Siberian Math. J., 52:5 (2011), 1087–1095 | DOI | MR | Zbl

[8] T. I. Nekrasova, “Cauchy problem for multidimensional difference equations in lattice cone”, Journal of Siberian Federal University. Mathematics Physics, 5:4 (2012), 576–580 (in Russian)

[9] T. I. Nekrasova, “Sufficient conditions of algebraicity of generating functions of the solutions of multidimensional difference equations”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta, 6:3 (2013), 88–96 (in Russian) | Zbl