Analytic continuation of power series by means of interpolating the coefficients by meromorphic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 173-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of analytic continuation of a power series across an open arc on the boundary of the circle of convergence. The answer is given in terms of a meromorphic function of a special form that interpolates the coefficients of the series. We find the conditions for the sum of the series to extend analytically to a neigbourhood of the arc, to a sector defined by the arc, or to the whole complex plane except some arc on the convergence disk.
Keywords: Power series, analytic continuation, interpolating meromorphic function, indicator function.
@article{JSFU_2015_8_2_a6,
     author = {Aleksandr J. Mkrtchyan},
     title = {Analytic continuation of power series by means of interpolating the coefficients by meromorphic functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {173--183},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a6/}
}
TY  - JOUR
AU  - Aleksandr J. Mkrtchyan
TI  - Analytic continuation of power series by means of interpolating the coefficients by meromorphic functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 173
EP  - 183
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a6/
LA  - en
ID  - JSFU_2015_8_2_a6
ER  - 
%0 Journal Article
%A Aleksandr J. Mkrtchyan
%T Analytic continuation of power series by means of interpolating the coefficients by meromorphic functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 173-183
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a6/
%G en
%F JSFU_2015_8_2_a6
Aleksandr J. Mkrtchyan. Analytic continuation of power series by means of interpolating the coefficients by meromorphic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 173-183. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a6/

[1] L. Bieberbach, Analytische Fortsetzung, Springer, Berlin, 1955 | MR | Zbl

[2] L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Nauka, M., 1971 (in Russian) | MR | Zbl

[3] G. Polya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Mathematische Zeitschrift, 29 (1929), 549–640 | DOI | MR | Zbl

[4] N. Arakelian, “On efficient analytic continuation of power series”, Mathematics of the USSR-Sbornik, 52:1 (1985), 21–39 | DOI

[5] N. Arakelian, V. Martirosyan, Power series: Analytic continuation and location of singularities, University Press, Yerevan, 1991 (in Russian)

[6] N. U. Arakelian, “Approximation by entire functions and analytic continuation”, Progress in Approximation theory (Tampa, FL, 1990), Computational Mathematical Series, 19, Springer, New York, 1992, 295–313 | MR

[7] N. Arakelian, W. Luh, J. Muller, “On the localization of singularities of lacunar power series”, Complex Variables and Elliptic Equations, 52:7 (2007), 561–573 | DOI | MR | Zbl

[8] O. N. Zhdanov, A. K. Tsikh, “Investigation of multiple Mellin-Barnes integrals by means of multidimensional residues”, Sib. Math. J., 39:2 (1998), 281–298 | DOI | MR | Zbl

[9] I. A. Antipova, E. N. Mikhalkin, “Analytic continuations of a general algebraic function by means of Puiseux series”, Proceedings of the Steklov Institute of Mathematics, 279, no. 1, 2012, 3–13 | DOI | MR | Zbl