Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2015_8_2_a0, author = {Abdurahim A. Abdushukurov and Leyla R. Kakadjanova}, title = {A class of special empirical processes of independence}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {125--133}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a0/} }
TY - JOUR AU - Abdurahim A. Abdushukurov AU - Leyla R. Kakadjanova TI - A class of special empirical processes of independence JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2015 SP - 125 EP - 133 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a0/ LA - en ID - JSFU_2015_8_2_a0 ER -
%0 Journal Article %A Abdurahim A. Abdushukurov %A Leyla R. Kakadjanova %T A class of special empirical processes of independence %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2015 %P 125-133 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a0/ %G en %F JSFU_2015_8_2_a0
Abdurahim A. Abdushukurov; Leyla R. Kakadjanova. A class of special empirical processes of independence. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 2, pp. 125-133. http://geodesic.mathdoc.fr/item/JSFU_2015_8_2_a0/
[1] K. S. Alexander, “Probability inequalities for empirical processes and a law of the iterated logarithm”, Ann. Probab., 12:4 (1984), 1041–1067 | DOI | MR | Zbl
[2] R. M. Dudley, “Central limit theorems for empirical measures”, Ann. Probab., 6 (1978), 899–929 | DOI | MR | Zbl
[3] P. Gaensler, W. Stute, “Empirical processes: a survey of results for independent and identically distributed random variables”, Ann. Probab., 7:2 (1979), 193–243 | DOI | MR
[4] E. Gine, J. Zinn, “Some limit theorems for empirical processes”, Ann. Probab., 12:4 (1984), 929–989 | DOI | MR | Zbl
[5] G. R. Shorack, J. A. Wellner, Empirical processes with applications to statistics, John Wiley Sons, 1986 | MR
[6] A. W. Van der Vaart, J. A. Wellner, Weak convergence and empirical processes, Springer, 1996 | MR | Zbl
[7] A. W. Van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998 | MR | Zbl
[8] A. A. Abdushukurov, L. R. Kakadjanova, “About one class of empirical processes”, Proceedings of the XVI International Conference on eventological mathematics and related issues (Krasnoyarsk, 2012), 31 (in Russian) | Zbl
[9] A. A. Abdushukurov, L. R. Kakadjanova, “Asymptotical Gaussian distribution of a class of empirical processes”, Problems of modern topology and its applications, Proc. of reports International Conf. (Tashkent, 2013), 100–102 (in Russian)
[10] A. A. Abdushukurov, L. R. Kakadjanova, “An empirical processes of independence by class of measured functions”, Statistics and its Applications, Materials of conf. (Tashkent, 2013), 24–29 (in Russian)
[11] A. A. Abdushukurov, L. R. Kakadjanova, “An empirical processes of independence indexed by class of measured functions”, Acta National University of Uzbekistan, 1:2 (2014), 15–20 (in Russian)
[12] A. A. Abdushukurov, On some estimates of the distribution function under random censorship, Conference of young Scientists, Math. Inst. Acad. Sci. Uzbek SSR, No 8756, VINITI, 1984 (in Russian)
[13] A. A. Abdushukurov, Nonparametric estimation in proportional hazards model, No 3448-87, VINITI, 1987 (in Russian)
[14] A. A. Abdushukurov, “Estimating of the probability density and intensity function of the Koziol–Green model of random censoring”, Sankhya: The Indian J. Statist., 48 (1987), 150–168 | MR
[15] S. Csörgő, “Estimation in the proportional hazards model of random censorship”, Statistics, 19:3 (1988), 437–463 | DOI | MR
[16] S. Csörgő, J. J. Faraway, “The paradoxical nature of the proportional hazards model of random censorship”, Statistics, 31 (1998), 67–78 | DOI | MR | Zbl