Parameter determination in a differential equation of fractional order with Riemann--Liouville fractional derivative in a Hilbert space
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 55-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy type problem for a differential equation with fractional derivative and self-adjoint operator in a Hilbert space is considered. The problem of parameter determination in equation by the value of the solution at a fixed point is presented. Theorems of existence and uniqueness of the solution are proved.
Keywords: equation of fractional order, Hilbert space, self-adjoint operator, Cauchy-type problem, Mittag–Leffler function, inverse problem, characteristic function.
@article{JSFU_2015_8_1_a7,
     author = {Dmitry G. Orlovsky},
     title = {Parameter determination in a differential equation of fractional order with {Riemann--Liouville} fractional derivative in a {Hilbert} space},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {55--63},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a7/}
}
TY  - JOUR
AU  - Dmitry G. Orlovsky
TI  - Parameter determination in a differential equation of fractional order with Riemann--Liouville fractional derivative in a Hilbert space
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 55
EP  - 63
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a7/
LA  - en
ID  - JSFU_2015_8_1_a7
ER  - 
%0 Journal Article
%A Dmitry G. Orlovsky
%T Parameter determination in a differential equation of fractional order with Riemann--Liouville fractional derivative in a Hilbert space
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 55-63
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a7/
%G en
%F JSFU_2015_8_1_a7
Dmitry G. Orlovsky. Parameter determination in a differential equation of fractional order with Riemann--Liouville fractional derivative in a Hilbert space. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 55-63. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a7/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Application, Gordon and Breach Science Publishers, 1993

[2] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley and Sons, Inc., New York, 1993

[3] A. M. Nakhushev, Fractional calculus and Applications, Fizmatlit, M., 2003 (in Russian)

[4] A. V. Pskhu, Boundary value problems for partial differential equations fractional and continual order, Nalchik, 2005 (in Russian)

[5] A. N. Kochubei, “The Cauchy problem for evolution equations of fractional order”, Differentsial'nye uravneniya, 25:8 (1989), 1359–1368 (in Russian)

[6] V. A. Kostin, “The Cauchy problem for an abstract differential equation with fractional derivatives”, Dokl. Akad. Nauk SSSR, 326:4 (1992), 597–600 (in Russian)

[7] A. V. Glushak, “The Cauchy type problem for abstract differential equation with fractional derivative”, Vestnik Voronezh. Gos. Univ., Fiz.-mat., 2001, no. 2, 74–77 (in Russian)

[8] Ph. Clement, G. Gripenberg, S.-O. Londen, “Regularity properties of solutions of fractional evolution equation. Evolution equations and their application in physical and life science”, Lecture Notes in Pure and Appl. Math., 215, Dekker, New York, 2001, 235–246

[9] H. K. Awad, A. V. Glushak, “On a perturbation of an abstract differential equation with fractional derivatives by nonlinear operator”, Sovremennaya matematika. Fundamental'nye napravleniya, 35 (2010), 5–21 (in Russian)

[10] K. Yosida, Functional Analysis, Springer-Verlag, 1980

[11] A. V. Glushak, “On a perturbation of an abstract differential equation with Riemann–Liouville fractional derivatives”, Differentsial'nye uravneniya, 46:6 (2010), 859–873 (in Russian)

[12] A. I. Prilepko, “Inverse problems of Potential theory (elliptic, parabolic, hyperbolic equations and transport equation)”, Matematicheskie zametki, 14:6 (1973), 755–767 (in Russian)

[13] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York–Basel, 2000

[14] A. D. Iskenderov, R. G. Tagiev, “The inverse problem of determining the right parts of evolution equations in Banach space”, Nauchnyye Trudy Azerbaidzhanskogo Gosudarstvennogo Universiteta, 1979, no. 1, 51–56 (in Russian)

[15] W. Rundell, “Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data”, Appl. Anal., 10 (1980), 231–242 | DOI

[16] Yu. S. Eidelman, “Two-point problem for a differential equation with a parameter”, Dokl. Akad. Nauk UkrSSR, ser. A, 1983, no. 4, 15–18 (in Russian)

[17] I. V. Tikhonov, Yu. S. Eidelman, “The inverse problem for differerential equation in a Banach space and the distribution of zeros of entire the Mittag–Leffler function”, Differentsial'nye uravneniya, 38:5 (2002), 637–644 (in Russian)

[18] D. G. Orlovsky, “One inverse problem for the equation of Maxwell–Boltzmann”, Journal of Siberian Federal University. Mathematics and Physics, 2:3 (2009), 328–336 (in Russian)

[19] D. G. Orlovsky, “Fredholm solvability of boundary inverse problems for abstract differential equations second order”, Differentsial'nye uravneniya, 28:4 (1992), 687–697 (in Russian)

[20] M. M. Kokurin, “The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space”, Russian Math. (Iz. VUZ), 57:12 (2013), 16–30

[21] M. M. El-Borai, “On the solvability of an inverse fractional abstract Cauchy problem”, Int. J. of Research and Review in Applied Science, 4:4 (2010), 411–416

[22] A. V. Glushak, “Inverse problem for evolution equation with integral of fractional order at boundary condition”, Sovremennaya matematika. Fundamental'nye napravleniya, 29 (2008), 49–61 (in Russian)

[23] D. G. Orlovsky, “To the problem of determining the parameter of the evolution equation”, Differential'nye uravneniya, 26:9 (1990), 1614–1621 (in Russian)

[24] A. Yu. Popov, A. M. Sedletskyi, “The distribution of roots of the Mittag–Leffler functions”, Sovremennaya matematika. Fundamental'nye napravleniya, 40 (2011), 3–171 (in Russian)