Generation of the Chevalley group of type $G_2$ over the ring of integers by~three involutions two of which commute
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 104-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that $G_2(\mathbb{Z})$ is generated by three involutions. Two of these involutions commute.
Keywords: ring of integers, generating involutions, Chevalley group.
@article{JSFU_2015_8_1_a12,
     author = {Ivan A. Timofeenko},
     title = {Generation of the {Chevalley} group of type $G_2$ over the ring of integers by~three involutions two of which commute},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {104--108},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a12/}
}
TY  - JOUR
AU  - Ivan A. Timofeenko
TI  - Generation of the Chevalley group of type $G_2$ over the ring of integers by~three involutions two of which commute
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2015
SP  - 104
EP  - 108
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a12/
LA  - en
ID  - JSFU_2015_8_1_a12
ER  - 
%0 Journal Article
%A Ivan A. Timofeenko
%T Generation of the Chevalley group of type $G_2$ over the ring of integers by~three involutions two of which commute
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2015
%P 104-108
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a12/
%G en
%F JSFU_2015_8_1_a12
Ivan A. Timofeenko. Generation of the Chevalley group of type $G_2$ over the ring of integers by~three involutions two of which commute. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 8 (2015) no. 1, pp. 104-108. http://geodesic.mathdoc.fr/item/JSFU_2015_8_1_a12/

[1] The Kourovka Notebook. Unsolved problems in group theory, 17th edition, 2010 (in Russian)

[2] M. C. Tamburini, P. Zucca, “Generation of Certain Matrix Groups by Three Involutions, Two of Which Commute”, J. of Algebra, 195 (1997), 650–661 | DOI

[3] Ya. N. Nuzhin, “On Generation of Groups $PSL_n(\mathbb{Z})$ by Three Involutions, Two of Which Commute”, Vladikavkaz. Matemat. Zh., 10:1 (2008), 68–74 (in Russian)

[4] Ya. N. Nuzhin, “Generating triples of involutions of the groups of Lie type over finite field of odd characteristic, II”, Algebra i Logika, 36:4 (1997), 422–440 (in Russian)

[5] R. W. Carter, Simple Groups of Lie Type, John Wiley and Sons, 1972

[6] R. Steinberg, Lectures on Chevalley groups, Yale Univ., Math. Dept., 1967

[7] V. M. Levchuk, Ya. N. Nuzhin, “Structure of Ree groups”, Algebra i Logika, 24:1 (1985), 26–41 (in Russian) | DOI