Solving Yang–Mills equations for 4-metrics of Petrov types II, N, III
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 472-488
Cet article a éte moissonné depuis la source Math-Net.Ru
We have produced 4 series of 4-metrics satisfying Yang–Mills equations for each of types II, N, III.
Keywords:
Einstein equations, Yang–Mills equations, manifold with conformal connection with torsion and without torsion.
@article{JSFU_2014_7_4_a6,
author = {Leonid N. Krivonosov and Vyacheslav A. Lukyanov},
title = {Solving {Yang{\textendash}Mills} equations for 4-metrics of {Petrov} types {II,} {N,} {III}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {472--488},
year = {2014},
volume = {7},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a6/}
}
TY - JOUR AU - Leonid N. Krivonosov AU - Vyacheslav A. Lukyanov TI - Solving Yang–Mills equations for 4-metrics of Petrov types II, N, III JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 472 EP - 488 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a6/ LA - en ID - JSFU_2014_7_4_a6 ER -
%0 Journal Article %A Leonid N. Krivonosov %A Vyacheslav A. Lukyanov %T Solving Yang–Mills equations for 4-metrics of Petrov types II, N, III %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2014 %P 472-488 %V 7 %N 4 %U http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a6/ %G en %F JSFU_2014_7_4_a6
Leonid N. Krivonosov; Vyacheslav A. Lukyanov. Solving Yang–Mills equations for 4-metrics of Petrov types II, N, III. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 472-488. http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a6/
[1] A. Z. Petrov, New methods in General Relativity, Nauka, M., 1966 (in Russ.) | MR
[2] Yu. S. Vladimirov, Geometrophysics, BINOM, M., 2010 (in Russian)
[3] L. N. Krivonosov, V. A. Luk'yanov, “The full solution of Yang-Mills equations for the central-symmetric metrics”, Journal of Siberian Federal University. Mathematics $\$ Physics, 4:3 (2011), 350–362 (in Russ.)
[4] L. N. Krivonosov, V. A. Luk'yanov, “Purely time-dependent solutions to the Yang–Mills equations on a 4-dimensional manifold with conformal torsion-free connection”, Journal of Siberian Federal University. Mathematics $\$ Physics, 6:1 (2013), 40–52
[5] M. Korzyjnski, J. Levandowski, The Normal Conformal Cartan Connection and the Bach Tensor, 2003, arXiv: gr-qc/0301096v3 | MR