On long-term behavior of continuous-time Markov branching processes allowing immigration
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 443-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

We observe the continuous-time Markov Branching Process allowing Immigration. Limit properties of transition functions and their convergence to invariant measures are investigated. A speed of this convergence is defined.
Keywords: Markov Branching Process, transition functions, invariant measures, rate of convergence.
Mots-clés : immigration
@article{JSFU_2014_7_4_a3,
     author = {Azam A. Imomov},
     title = {On long-term behavior of continuous-time {Markov} branching processes allowing immigration},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {443--454},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a3/}
}
TY  - JOUR
AU  - Azam A. Imomov
TI  - On long-term behavior of continuous-time Markov branching processes allowing immigration
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 443
EP  - 454
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a3/
LA  - en
ID  - JSFU_2014_7_4_a3
ER  - 
%0 Journal Article
%A Azam A. Imomov
%T On long-term behavior of continuous-time Markov branching processes allowing immigration
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 443-454
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a3/
%G en
%F JSFU_2014_7_4_a3
Azam A. Imomov. On long-term behavior of continuous-time Markov branching processes allowing immigration. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 443-454. http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a3/

[1] W. Anderson, Continuous-Time Markov Chains: An Applications-Oriented Approach, Springer, New York, 1991 | MR | Zbl

[2] K. B. Athreya, P. E. Ney, Branching processes, Springer, New York, 1972 | MR | Zbl

[3] M. S. Bartlett, An introduction to stochastic processes with special reference to methods and applications, Cambridge University Press, 1955 | MR | Zbl

[4] H. Conner, “A note on limit theorems for Markov branching processes”, Proceedings of American Mathematical Society, 18 (1967), 76–86 | DOI | MR | Zbl

[5] A. A. Imomov, “On stationary measures of critical Markov branching processes with immigration”, Uzbeksky matematichesky zhournal, 5 (1998), 25–28 (in Russ.) | MR

[6] A. A. Imomov, “On Markov analogue of Q-processes with continuous time”, Theory of Probability and Mathematical Statistics, 84 (2012), 57–64 | DOI | MR | Zbl

[7] S. Karlin, J. McGregor, “Linear growth, birth, and death processes”, Journal of Mathematics and Mechanics, 4 (1958), 643–662 | MR

[8] J. Li, A. Chen, A. G. Pakes, “Asymptotic properties of the Markov Branching Process with Immigration”, Journal of Theoretical Probability, 22 pp.

[9] A. G. Pakes, “On Markov branching processes with immigration”, Sankhyā: The Indian Journal of Statistics, A37 (1975), 129–138 | MR | Zbl

[10] E. Seneta, “On the invariant measures for simple branching process”, Journal of Applied Probabilty, 8 (1971), 43–51 | DOI | MR | Zbl

[11] B. A. Sevastyanov, “Limit theorems for stochastic branching processes of special form”, Teoriay veroyatnosti i ee prilozheniya, 2:3 (1957), 360–374 (in Russ.) | MR

[12] B. A. Sevastyanov, Branching processes, Nauka, M., 1971 (in Russ.) | MR | Zbl

[13] Y. S. Yang, “On branching processes allowing immigration”, Journal of Applied Probabilty, 9 (1972), 24–31 | DOI | MR | Zbl