Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_4_a3, author = {Azam A. Imomov}, title = {On long-term behavior of continuous-time {Markov} branching processes allowing immigration}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {443--454}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a3/} }
TY - JOUR AU - Azam A. Imomov TI - On long-term behavior of continuous-time Markov branching processes allowing immigration JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 443 EP - 454 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a3/ LA - en ID - JSFU_2014_7_4_a3 ER -
%0 Journal Article %A Azam A. Imomov %T On long-term behavior of continuous-time Markov branching processes allowing immigration %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2014 %P 443-454 %V 7 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a3/ %G en %F JSFU_2014_7_4_a3
Azam A. Imomov. On long-term behavior of continuous-time Markov branching processes allowing immigration. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 443-454. http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a3/
[1] W. Anderson, Continuous-Time Markov Chains: An Applications-Oriented Approach, Springer, New York, 1991 | MR | Zbl
[2] K. B. Athreya, P. E. Ney, Branching processes, Springer, New York, 1972 | MR | Zbl
[3] M. S. Bartlett, An introduction to stochastic processes with special reference to methods and applications, Cambridge University Press, 1955 | MR | Zbl
[4] H. Conner, “A note on limit theorems for Markov branching processes”, Proceedings of American Mathematical Society, 18 (1967), 76–86 | DOI | MR | Zbl
[5] A. A. Imomov, “On stationary measures of critical Markov branching processes with immigration”, Uzbeksky matematichesky zhournal, 5 (1998), 25–28 (in Russ.) | MR
[6] A. A. Imomov, “On Markov analogue of Q-processes with continuous time”, Theory of Probability and Mathematical Statistics, 84 (2012), 57–64 | DOI | MR | Zbl
[7] S. Karlin, J. McGregor, “Linear growth, birth, and death processes”, Journal of Mathematics and Mechanics, 4 (1958), 643–662 | MR
[8] J. Li, A. Chen, A. G. Pakes, “Asymptotic properties of the Markov Branching Process with Immigration”, Journal of Theoretical Probability, 22 pp.
[9] A. G. Pakes, “On Markov branching processes with immigration”, Sankhyā: The Indian Journal of Statistics, A37 (1975), 129–138 | MR | Zbl
[10] E. Seneta, “On the invariant measures for simple branching process”, Journal of Applied Probabilty, 8 (1971), 43–51 | DOI | MR | Zbl
[11] B. A. Sevastyanov, “Limit theorems for stochastic branching processes of special form”, Teoriay veroyatnosti i ee prilozheniya, 2:3 (1957), 360–374 (in Russ.) | MR
[12] B. A. Sevastyanov, Branching processes, Nauka, M., 1971 (in Russ.) | MR | Zbl
[13] Y. S. Yang, “On branching processes allowing immigration”, Journal of Applied Probabilty, 9 (1972), 24–31 | DOI | MR | Zbl