Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_4_a2, author = {Valery V. Denisenko}, title = {Energy method for mathematical modeling of heat transfer in {2-D} flow}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {431--442}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a2/} }
TY - JOUR AU - Valery V. Denisenko TI - Energy method for mathematical modeling of heat transfer in 2-D flow JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 431 EP - 442 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a2/ LA - en ID - JSFU_2014_7_4_a2 ER -
%0 Journal Article %A Valery V. Denisenko %T Energy method for mathematical modeling of heat transfer in 2-D flow %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2014 %P 431-442 %V 7 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a2/ %G en %F JSFU_2014_7_4_a2
Valery V. Denisenko. Energy method for mathematical modeling of heat transfer in 2-D flow. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 431-442. http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a2/
[1] V. V. Denisenko, “A boundary value problem for an elliptic equation in two variables with asymmetric tensor coefficients”, Sib. Math. J., 35:3 (1994), 495–505 | DOI | MR | Zbl
[2] V. V. Denisenko, Energy Methods for Elliptic Equations with Asymmetric Coefficients, Publ. house of the Russian Academy of Sciences, Siberian Branch, Novosibirsk, 1995 (in Russian) | MR
[3] V. V. Denisenko, “Energy method for three-dimensional problems of transfer in moving media”, Russian Journal of Numerical Analysis and Mathematical Modelling, 14:1 (1999), 37–58 | DOI | MR
[4] V. V. Denisenko, “The energy method for convection-diffusion problems”, Zh. Prikladnoi Matematiki i Tehnicheskoi Fiziki, 38:2 (1997), 197–203 (in Russ.) | MR
[5] J. Gao, X.-F. Yin, Z.-L. Fang, “Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip”, Miniaturisation for chemistry, biology and bioengineering, 4 (2004), 47–52
[6] L. V. Gileva, V. V. Shaidurov, “Two multigrid iterative algorithms for a discrete analogue of the biharmonic equation”, Sib. Zh. Chislennoi Matematiki, 7:3 (2004), 213–228 (in Russ.) | Zbl
[7] S. K. Godunov, V. S. Ryabenky, Finite Difference Schemes: Introduction to Theory, Nauka, M., 1973 (in Russian) | Zbl
[8] C.-T. Huang, T. G. Amstislavskaya, G.-H. Chen, H.-H. Chang, Y.-H. Chen, C.-P. Jen, “Selectively concentrating cervical carcinoma cells from red blood cells utilizing dielectrophoresis with circular ITO electrodes in stepping electric fields”, Journal of medical and biological engineering, 33:1 (2012), 51–58 | DOI
[9] L. D. Landau, E. M. Liphshits, Theoretical Physics, v. 6, Hydrodynamics, Nauka, M., 1986 (in Russian) | MR
[10] S. G. Mikhlin, Variational Methods in Mathematical Physics, Pergamon Press, New York, 1964 | MR
[11] Yu. B. Rumer, M. Sh. Ryvkin, Thermodynamics, Statistical Physics and Kinetics, Mir, M., 1980
[12] V. V. Shaidurov, G. I. Shchepanovskaya, M. V. Yakubovich, “Numerical simulation of viscous heat conducting gas in a chanal”, Vychislitelnye Tehnologii, 18:4 (2013), 77–90 (in Russian)
[13] E. O'Riordan, M. L. Pickett, G. I. Shishkin, “Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems”, Mathematics of Computation, 75 (2006), 1135–1154 | DOI | MR | Zbl