The solution of algebraic equations of continuous fractions of Nikiports
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 533-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical expressions representing all the roots of a random algebraic equation of $n$-th degree in terms of the equation coefficients are presented in the paper. These formulas consist of two ratios of infinite Toeplitz determinants. The diagonal elements of the determinants are the coefficients of algebraic equations. To find complex roots the method of summation of divergent continued fractions is used.
Keywords: infinite Toeplitz determinant, $r/\varphi$-algorithm, diverging continuous fractions.
Mots-clés : algebraic equation
@article{JSFU_2014_7_4_a11,
     author = {Vladimir I. Shmoylov and Gennadiy A. Kirichenko},
     title = {The solution of algebraic equations of continuous fractions of {Nikiports}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {533--547},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a11/}
}
TY  - JOUR
AU  - Vladimir I. Shmoylov
AU  - Gennadiy A. Kirichenko
TI  - The solution of algebraic equations of continuous fractions of Nikiports
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 533
EP  - 547
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a11/
LA  - en
ID  - JSFU_2014_7_4_a11
ER  - 
%0 Journal Article
%A Vladimir I. Shmoylov
%A Gennadiy A. Kirichenko
%T The solution of algebraic equations of continuous fractions of Nikiports
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 533-547
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a11/
%G en
%F JSFU_2014_7_4_a11
Vladimir I. Shmoylov; Gennadiy A. Kirichenko. The solution of algebraic equations of continuous fractions of Nikiports. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 4, pp. 533-547. http://geodesic.mathdoc.fr/item/JSFU_2014_7_4_a11/

[1] G. P. Katishev, Solution of algebraic equations of arbitrary degree: theory, methods, algorithms, URRS, M., 2010 (in Russ.)

[2] I. F. Korchagin, Algebraic equations, Fizmatkniga, M., 2006 (in Russ.)

[3] P. W. Hamming, Numerical methods for scientists and engineers, McGraw-Hill, New York, 1962 | Zbl

[4] V. I. Shmoylov, R. I. Tuchapsky, Algebraic equations. An infinite system of linear algebraic equations. Bibliographic index, Mercator, Lviv, 2003 (in Russ.)

[5] H. J. Mellin, “Resolution de l' equation algebrique generale a l'aide de gamma function”, C.R. Acad. Sci. Paris, Ser. I Math., 172 (1921), 658–661 | Zbl

[6] E. N. Mikhalkin, “On solving general algebraic equations by integrals of elementary functions”, Siberian Math. J., 47:2 (2006), 301–306 | DOI | MR | Zbl

[7] V. I. Shmoylov, Continuous fraction, Divergent continuous fraction, Inst. problems of mechanics and mathematics NAN of Ukraine, Lviv; Mercator, 2004 (in Russ.)

[8] V. I. Shmoylov, V. B. Kovalenko, “Some applications of the algorithm of summation of divergent continued fractions”, Bulleten Yuzhnogo nauchnogo tsentra RAN, 8:4 (2012), 3–13 (in Russ.)

[9] V. I. Shmoylov, D. E. Savchenko, “About the algorithm of summation of divergent continued fractions”, Vestnik Voronezhskogo Gos. Universiteta. Series: Fizika. Matematika, 2013, no. 2, 258–276 (in Russ.)

[10] V. I. Shmoylov, Divergent systems of linear algebraic equations, Taganrog. tehnolog. institut Yuzhhogo federal. universiteta, Taganrog, 2010 (in Russ.)

[11] V. F. Guzik, V. I. Shmoylov, G. A. Kirichenko, “Continuous fractions and their application in computational mathematics”, Izvestiya YuFedU. Engenernye Nauki, 150:1 (2014), 158–174 (in Russ.)

[12] A. C. Aitken, “On Bernulli's numerical solution of algebraic equations”, Proc. Roy. Soc., Edinburg, 1925/26, 289–305 pp.

[13] V. I. Shmoylov, Continuous fractions and $r/\varphi$-algorithm, TSURE, Taganrog, 2012 (in Russ.)

[14] V. A. Skorobogatko, Theory of branched continued fractions and its applications in computational mathematics, Nauka, M., 1983 (in Russ.) | Zbl

[15] V. I. Shmoylov, Periodic continued fractions, Academic Express, Lviv, 1998 (in Russ.)

[16] H. Rutishauser, Der Quotienten-Differenzen-Algorithmu, Birkhauser, Basel, 1957 | MR | Zbl