Generator of solutions for $2D$ Navier--Stokes equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 324-330
Voir la notice de l'article provenant de la source Math-Net.Ru
On the paper under consideration the investigation of Navier–Stokes equations for $2D$ viscous incompressible fluid flow is present. An analysis is based on the first integral of these equations. It is revealed that all ratios are reduced to one governing equation which can be considered as a generator of solutions.
Keywords:
differential equation, partial derivative, nonlinearity, integral, generator of solutions.
Mots-clés : viscous incompressible fluid
Mots-clés : viscous incompressible fluid
@article{JSFU_2014_7_3_a6,
author = {Alexander V. Koptev},
title = {Generator of solutions for $2D$ {Navier--Stokes} equations},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {324--330},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a6/}
}
TY - JOUR AU - Alexander V. Koptev TI - Generator of solutions for $2D$ Navier--Stokes equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 324 EP - 330 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a6/ LA - en ID - JSFU_2014_7_3_a6 ER -
Alexander V. Koptev. Generator of solutions for $2D$ Navier--Stokes equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 324-330. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a6/