Generator of solutions for $2D$ Navier--Stokes equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 324-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the paper under consideration the investigation of Navier–Stokes equations for $2D$ viscous incompressible fluid flow is present. An analysis is based on the first integral of these equations. It is revealed that all ratios are reduced to one governing equation which can be considered as a generator of solutions.
Keywords: differential equation, partial derivative, nonlinearity, integral, generator of solutions.
Mots-clés : viscous incompressible fluid
@article{JSFU_2014_7_3_a6,
     author = {Alexander V. Koptev},
     title = {Generator of solutions for $2D$ {Navier--Stokes} equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {324--330},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a6/}
}
TY  - JOUR
AU  - Alexander V. Koptev
TI  - Generator of solutions for $2D$ Navier--Stokes equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 324
EP  - 330
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a6/
LA  - en
ID  - JSFU_2014_7_3_a6
ER  - 
%0 Journal Article
%A Alexander V. Koptev
%T Generator of solutions for $2D$ Navier--Stokes equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 324-330
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a6/
%G en
%F JSFU_2014_7_3_a6
Alexander V. Koptev. Generator of solutions for $2D$ Navier--Stokes equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 324-330. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a6/

[1] L. G. Loitsynskiy, Mechanics of Fluid and Gas, Nauka, M., 1987 (in Russian)

[2] N. E. Kochin, I. A. Kibel, N. V. Rose, Theoretical Hydromechanics, v. 2, Nauka, M., 1967 (in Russian) | Zbl

[3] O. A. Ladijzenskaia, The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach, New York, 1969

[4] Charles L. Fefferman, Existence and smoothness of the Navier–Stokes equation, Preprint, Princeton Univ., Math. Dept., Princeton, NJ, USA, 2000, 5 pp. | MR

[5] A. V. Koptev, “Integrals of Navier–Stokes equations”, Trudy Sredne-volzhskogo Matematicheskogo Obshchestva, 6:1 (2004), 215–225 (in Russian) | Zbl

[6] A. V. Koptev, “First integral and ways of further integration of Navier–Stokes equations”, Izvestia Rossiyskogo gosudarstvennogo pedagogicheskogo universiteta im. Gertsena, 147 (2012), 7–17 (in Russian)

[7] A. V. Koptev, “How integrate the Navier–Stokes equations”, Physical Mechanics, Saint-Petersburg state university, Saint-Petersburg, 8 (2004), 218–226 (in Russian)