Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_3_a12, author = {Romi F. Shamoyan and Sergey M. Kurilenko}, title = {On a new embedding theorem in analytic {Bergman} type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {383--388}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a12/} }
TY - JOUR AU - Romi F. Shamoyan AU - Sergey M. Kurilenko TI - On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 383 EP - 388 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a12/ LA - en ID - JSFU_2014_7_3_a12 ER -
%0 Journal Article %A Romi F. Shamoyan %A Sergey M. Kurilenko %T On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2014 %P 383-388 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a12/ %G en %F JSFU_2014_7_3_a12
Romi F. Shamoyan; Sergey M. Kurilenko. On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 383-388. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a12/
[1] J. Ortega, J. Fabrega, “Mixed-norm spaces and interpolation”, Studia Math., 109:3 (1994), 234–254 | MR
[2] M. Abate, A. Saracco, “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 83 (2011), 587–605 | DOI | MR | Zbl
[3] M. Abate, J. Raissy, A. Saracco, “Toeplitz operators and Carleson measures in strongly pseudoconvex domains”, Journal of Functional Analysis, 263 (2012), 3449–3491 | DOI | MR | Zbl
[4] T. Cima, P. Mercer, “Composition operators between Bergman spaces in convex domains in $C^n$”, Journal of Operator theory, 33 (1995), 363–369 | MR | Zbl
[5] F. Beatrous, “Holder estimates for the $\bar{\partial}$ equation with a support condition”, Pacific J. Math., 90:2 (1980), 249–257 | DOI | MR | Zbl
[6] R. Shamoyan, “On some characterizations of Carleson type measure in the unit ball”, Banach J. Math. Anal., 3:2 (2009), 42–48 | DOI | MR | Zbl
[7] F. Beatrous, J. Burbea, “Characterizations of spaces of holomorphic functions in the ball”, Kodai Math. J., 8 (1985) | DOI | MR | Zbl
[8] M. Englis, T. Hanninen, T. Taskinen, “Minimal $L^\infty$ type on strictly pseudoconvex domains on which Bergman projection continious”, Houston J. Math., 32 (2006), 253–275 | MR | Zbl
[9] R. Shamoyan, E. Povpritz, “Multifunctional analytic spaces and some new sharp embedding theorems in strongly pseudoconvex domains”, Kragujevac Mathematical Journal, 37:2 (2013), 221–244 | MR