On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 383-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new sharp assertions concerning Carleson type embeddings in analytic spaces on bounded strictly pseudoconvex domains with smooth boundary will be provided. We extend previously known in the unit ball assertions.
Keywords: analytic functions, mixed-norm spaces.
Mots-clés : pseudoconvex domains
@article{JSFU_2014_7_3_a12,
     author = {Romi F. Shamoyan and Sergey M. Kurilenko},
     title = {On a new embedding theorem in analytic {Bergman} type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {383--388},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a12/}
}
TY  - JOUR
AU  - Romi F. Shamoyan
AU  - Sergey M. Kurilenko
TI  - On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 383
EP  - 388
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a12/
LA  - en
ID  - JSFU_2014_7_3_a12
ER  - 
%0 Journal Article
%A Romi F. Shamoyan
%A Sergey M. Kurilenko
%T On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 383-388
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a12/
%G en
%F JSFU_2014_7_3_a12
Romi F. Shamoyan; Sergey M. Kurilenko. On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 3, pp. 383-388. http://geodesic.mathdoc.fr/item/JSFU_2014_7_3_a12/

[1] J. Ortega, J. Fabrega, “Mixed-norm spaces and interpolation”, Studia Math., 109:3 (1994), 234–254 | MR

[2] M. Abate, A. Saracco, “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 83 (2011), 587–605 | DOI | MR | Zbl

[3] M. Abate, J. Raissy, A. Saracco, “Toeplitz operators and Carleson measures in strongly pseudoconvex domains”, Journal of Functional Analysis, 263 (2012), 3449–3491 | DOI | MR | Zbl

[4] T. Cima, P. Mercer, “Composition operators between Bergman spaces in convex domains in $C^n$”, Journal of Operator theory, 33 (1995), 363–369 | MR | Zbl

[5] F. Beatrous, “Holder estimates for the $\bar{\partial}$ equation with a support condition”, Pacific J. Math., 90:2 (1980), 249–257 | DOI | MR | Zbl

[6] R. Shamoyan, “On some characterizations of Carleson type measure in the unit ball”, Banach J. Math. Anal., 3:2 (2009), 42–48 | DOI | MR | Zbl

[7] F. Beatrous, J. Burbea, “Characterizations of spaces of holomorphic functions in the ball”, Kodai Math. J., 8 (1985) | DOI | MR | Zbl

[8] M. Englis, T. Hanninen, T. Taskinen, “Minimal $L^\infty$ type on strictly pseudoconvex domains on which Bergman projection continious”, Houston J. Math., 32 (2006), 253–275 | MR | Zbl

[9] R. Shamoyan, E. Povpritz, “Multifunctional analytic spaces and some new sharp embedding theorems in strongly pseudoconvex domains”, Kragujevac Mathematical Journal, 37:2 (2013), 221–244 | MR