Numerical evaluation of the truncated singular value decomposition within the seismic traveltimes tomography framework
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 224-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of truncated singular value decomposition is a powerful tool of regularization and solution of inverse problems. Application of this method is limited by the memory requirements for the calculation of singular value decomposition of matrices. The solution is a usage of iterative procedures, that provide the possibility to evaluate only the largest singular values and corresponding vectors. For the practical application of this methodology one should answer the questions: what part of the spectrum can be determined numerically and whether the number of singular vectors is enough for the solution. These problems are considered in the present paper within the seismic traveltimes inversion framework.
Keywords: inverse problems, numerical methods, truncated singular value decomposition, geophysics, seismic traveltimes.
@article{JSFU_2014_7_2_a9,
     author = {Alexandr S. Serdyukov and Andrey V. Patutin and Tatiana V. Shilova},
     title = {Numerical evaluation of the truncated singular value decomposition within the seismic traveltimes tomography framework},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {224--234},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a9/}
}
TY  - JOUR
AU  - Alexandr S. Serdyukov
AU  - Andrey V. Patutin
AU  - Tatiana V. Shilova
TI  - Numerical evaluation of the truncated singular value decomposition within the seismic traveltimes tomography framework
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 224
EP  - 234
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a9/
LA  - en
ID  - JSFU_2014_7_2_a9
ER  - 
%0 Journal Article
%A Alexandr S. Serdyukov
%A Andrey V. Patutin
%A Tatiana V. Shilova
%T Numerical evaluation of the truncated singular value decomposition within the seismic traveltimes tomography framework
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 224-234
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a9/
%G en
%F JSFU_2014_7_2_a9
Alexandr S. Serdyukov; Andrey V. Patutin; Tatiana V. Shilova. Numerical evaluation of the truncated singular value decomposition within the seismic traveltimes tomography framework. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 224-234. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a9/

[1] L. Hatton, M. H. Worthington, J. Makin, Seismic data processing: theory and practice, Merlin Profiles Ltd., 1986

[2] V. A. Tcheverda, V. I. Kostin, “$R$-pseudoinverse for a compact operator”, Sib. Elektron. Mat. Izv., 7 (2010), 258–282 (in Russian)

[3] P. Mora, “Inversion=migration+tomography”, Geophysics, 54 (1989), 1575–1586 | DOI

[4] S. V. Goldin, Introduction to geometric seismic, Novosibirsky Gos. Univ., 2005 (in Russian)

[5] F. Natterer, The Mathematics of Computerized Tomography, Vieweg+Teubner Verlag, 1986 | MR

[6] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1995 | MR | Zbl

[7] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford etc., 1982 | MR | Zbl

[8] M. Z. Nashed, G. F. Vortuba, “A unified operator theory of generalized inverses”, Generalized Inverses and Applications, Academic Press, New York–San Francisko–London, 1976, 1–109 | MR

[9] A. N. Tikhonov, V. Y. Arsenin, Methods for solving ill-posed problems, Nauka, Moscow, 1979 (in Russian) | MR

[10] S. K. Godunov, A. G. Antonov, O. P. Kiriluk, V. I. Kostin, Guaranteed Accuracy in Numerical Linear Algebra, Kluwer Academic Publishers, 1993 | MR | Zbl