Elasto-plastic bending of a~beam
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 218-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

Special type of conservation laws for the equations which describe the bending of a beam is proposed in this paper. These laws are used to determine the elastic-plastic boundary.
Keywords: symmetries, conservation laws, cross-section, boundary conditions, piecewise-smooth contours, elasto-plastic boundary.
@article{JSFU_2014_7_2_a8,
     author = {Sergey I. Senashov and Olga N. Cherepanova and Alexandr V. Kondrin},
     title = {Elasto-plastic bending of a~beam},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {218--223},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a8/}
}
TY  - JOUR
AU  - Sergey I. Senashov
AU  - Olga N. Cherepanova
AU  - Alexandr V. Kondrin
TI  - Elasto-plastic bending of a~beam
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 218
EP  - 223
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a8/
LA  - en
ID  - JSFU_2014_7_2_a8
ER  - 
%0 Journal Article
%A Sergey I. Senashov
%A Olga N. Cherepanova
%A Alexandr V. Kondrin
%T Elasto-plastic bending of a~beam
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 218-223
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a8/
%G en
%F JSFU_2014_7_2_a8
Sergey I. Senashov; Olga N. Cherepanova; Alexandr V. Kondrin. Elasto-plastic bending of a~beam. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 218-223. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a8/

[1] B. D. Anin, G. P. Cherepanov, Elastic-plastic problem, Nauka, Novosibirsk, 1983 (in Russion)

[2] S. I. Senashov, O. N. Cherepanova, “New classes of solutions of minimal surfaces”, Journal of Siberian Federal University. Mathematics Physics, 3:2 (2010), 248–255

[3] S. I. Senashov, O. N. Cherepanova, A. V. Kondrin, “On elastoplastic torsion rod”, Vestnik SibGAU, 49:3 (2013), 100–103 (in Russion)