Elasto-plastic bending of a beam
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 218-223
Cet article a éte moissonné depuis la source Math-Net.Ru
Special type of conservation laws for the equations which describe the bending of a beam is proposed in this paper. These laws are used to determine the elastic-plastic boundary.
Keywords:
symmetries, conservation laws, cross-section, boundary conditions, piecewise-smooth contours, elasto-plastic boundary.
@article{JSFU_2014_7_2_a8,
author = {Sergey I. Senashov and Olga N. Cherepanova and Alexandr V. Kondrin},
title = {Elasto-plastic bending of a~beam},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {218--223},
year = {2014},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a8/}
}
TY - JOUR AU - Sergey I. Senashov AU - Olga N. Cherepanova AU - Alexandr V. Kondrin TI - Elasto-plastic bending of a beam JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 218 EP - 223 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a8/ LA - en ID - JSFU_2014_7_2_a8 ER -
Sergey I. Senashov; Olga N. Cherepanova; Alexandr V. Kondrin. Elasto-plastic bending of a beam. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 218-223. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a8/
[1] B. D. Anin, G. P. Cherepanov, Elastic-plastic problem, Nauka, Novosibirsk, 1983 (in Russion)
[2] S. I. Senashov, O. N. Cherepanova, “New classes of solutions of minimal surfaces”, Journal of Siberian Federal University. Mathematics Physics, 3:2 (2010), 248–255
[3] S. I. Senashov, O. N. Cherepanova, A. V. Kondrin, “On elastoplastic torsion rod”, Vestnik SibGAU, 49:3 (2013), 100–103 (in Russion)