On distance-regular graphs with $\lambda=2$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 204-210
Voir la notice de l'article provenant de la source Math-Net.Ru
V. P. Burichenko and A. A. Makhnev have found intersection arrays of distance-regular graphs with $\lambda=2$, $\mu>1$, having at most 1000 vertices. Earlier, intersection arrays of antipodal distance-regular graphs of diameter 3 with $\lambda\leqslant2$ and $\mu=1$ were obtained by the second author. In this paper, the possible intersection arrays of distance-regular graphs with $\lambda=2$ and the number of vertices not greater than 4096 are obtained.
Keywords:
distance-regular graph, nearly $n$-gon.
@article{JSFU_2014_7_2_a6,
author = {Alexander A. Makhnev and Marina S. Nirova},
title = {On distance-regular graphs with $\lambda=2$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {204--210},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/}
}
TY - JOUR AU - Alexander A. Makhnev AU - Marina S. Nirova TI - On distance-regular graphs with $\lambda=2$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 204 EP - 210 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/ LA - en ID - JSFU_2014_7_2_a6 ER -
Alexander A. Makhnev; Marina S. Nirova. On distance-regular graphs with $\lambda=2$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 204-210. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/