Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_2_a6, author = {Alexander A. Makhnev and Marina S. Nirova}, title = {On distance-regular graphs with $\lambda=2$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {204--210}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/} }
TY - JOUR AU - Alexander A. Makhnev AU - Marina S. Nirova TI - On distance-regular graphs with $\lambda=2$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 204 EP - 210 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/ LA - en ID - JSFU_2014_7_2_a6 ER -
Alexander A. Makhnev; Marina S. Nirova. On distance-regular graphs with $\lambda=2$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 204-210. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/
[1] V. P. Burichenko, A. A. Makhnev, “On amply regular locally cyclic graphs”, Modern problems of mathematics, Abstracts of the 42nd All-Russian Youth Conference, IMM UB RAS, Yekaterinburg, 2011, 11–14
[2] K. Coolsaeet, “Local structure of graphs with $\lambda=\mu=2$, $a_2=4$”, Combinatorica, 15:4 (1971), 481–487 | DOI
[3] M. S. Nirova, “On antipodal distance-regular graphs of diameter 3 with $\mu=1$”, Doklady Rossiiskoi Akademii Nauk, 448:4 (2013), 392–395 (in Russian) | MR | Zbl
[4] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[5] R. C. Bous, T. A. Dowling, “A generalization of Moore graphs of diameter 2”, J. Comb. Theory Ser. B, 11 (1971), 213–226 | DOI | MR