On distance-regular graphs with $\lambda=2$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 204-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

V. P. Burichenko and A. A. Makhnev have found intersection arrays of distance-regular graphs with $\lambda=2$, $\mu>1$, having at most 1000 vertices. Earlier, intersection arrays of antipodal distance-regular graphs of diameter 3 with $\lambda\leqslant2$ and $\mu=1$ were obtained by the second author. In this paper, the possible intersection arrays of distance-regular graphs with $\lambda=2$ and the number of vertices not greater than 4096 are obtained.
Keywords: distance-regular graph, nearly $n$-gon.
@article{JSFU_2014_7_2_a6,
     author = {Alexander A. Makhnev and Marina S. Nirova},
     title = {On distance-regular graphs with $\lambda=2$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {204--210},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/}
}
TY  - JOUR
AU  - Alexander A. Makhnev
AU  - Marina S. Nirova
TI  - On distance-regular graphs with $\lambda=2$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 204
EP  - 210
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/
LA  - en
ID  - JSFU_2014_7_2_a6
ER  - 
%0 Journal Article
%A Alexander A. Makhnev
%A Marina S. Nirova
%T On distance-regular graphs with $\lambda=2$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 204-210
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/
%G en
%F JSFU_2014_7_2_a6
Alexander A. Makhnev; Marina S. Nirova. On distance-regular graphs with $\lambda=2$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 204-210. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a6/

[1] V. P. Burichenko, A. A. Makhnev, “On amply regular locally cyclic graphs”, Modern problems of mathematics, Abstracts of the 42nd All-Russian Youth Conference, IMM UB RAS, Yekaterinburg, 2011, 11–14

[2] K. Coolsaeet, “Local structure of graphs with $\lambda=\mu=2$, $a_2=4$”, Combinatorica, 15:4 (1971), 481–487 | DOI

[3] M. S. Nirova, “On antipodal distance-regular graphs of diameter 3 with $\mu=1$”, Doklady Rossiiskoi Akademii Nauk, 448:4 (2013), 392–395 (in Russian) | MR | Zbl

[4] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[5] R. C. Bous, T. A. Dowling, “A generalization of Moore graphs of diameter 2”, J. Comb. Theory Ser. B, 11 (1971), 213–226 | DOI | MR