On differentiability of the solution of the mixed boundary value problem for a~nonlinear pseudohyperbolic equation with respect to small parameters
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 260-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorems on the differentiability of the solution of the mixed boundary value problem for nonlinear partial pseudohyperbolic differential equations of the fifth order with respect to small parameters are proved in this paper.
Keywords: nonlinear equation, solution differentiability, small parameters, countable system of nonlinear differential equations.
@article{JSFU_2014_7_2_a13,
     author = {Tursun K. Yuldashev},
     title = {On differentiability of the solution of the mixed boundary value problem for a~nonlinear pseudohyperbolic equation with respect to small parameters},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {260--271},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a13/}
}
TY  - JOUR
AU  - Tursun K. Yuldashev
TI  - On differentiability of the solution of the mixed boundary value problem for a~nonlinear pseudohyperbolic equation with respect to small parameters
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 260
EP  - 271
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a13/
LA  - en
ID  - JSFU_2014_7_2_a13
ER  - 
%0 Journal Article
%A Tursun K. Yuldashev
%T On differentiability of the solution of the mixed boundary value problem for a~nonlinear pseudohyperbolic equation with respect to small parameters
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 260-271
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a13/
%G en
%F JSFU_2014_7_2_a13
Tursun K. Yuldashev. On differentiability of the solution of the mixed boundary value problem for a~nonlinear pseudohyperbolic equation with respect to small parameters. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 260-271. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a13/

[1] V. M. Alexandrov, E. V. Kovalenko, Continuum mechanics problems with mixed boundary conditions, Nauka, Moscow, 1986 (in Russian)

[2] S. D. Algazin, I. A. Kiyko, Flutter of plates and shells, Nauka, Moscow, 2006 (in Russian)

[3] P. P. Kiryakov, S. I. Senashov, A. N. Yakhno, Application of symmetries and conservation laws to solving differential equations, Izdatel'stvo SO RAN, Novosibirsk, 2001 (in Russian)

[4] S. I. Senashov, “Conservation laws of plasticity equations”, Dokl. AN SSSR, 320:3 (1991), 606–608 (in Russian) | MR | Zbl

[5] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian)

[6] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Nauka, Moscow, 1988 (in Russian) | MR

[7] S. I. Pohozhaev, “On Prior estimates and gradient catastrophes smooth solutions of hyperbolic systems of conservation laws”, Trudy MI RAN, 243, 2003, 257–288 (in Russian) | MR | Zbl

[8] A. A. Samarskiy, “On some problems of contemporary theory of differential equations”, Diifferentsial'nye uravneniya, 16:11 (1980), 1221–1228 (in Russian)

[9] A. M. Nakhushev, “An approximation method for solving boundary value problems for differential equations with applications to the dynamics of soil moisture and groundwater”, Diifferentsial'nye uravneniya, 18:1 (1982), 72–81 (in Russian) | MR | Zbl

[10] D. G. Gordesiani, G. A. Avalishvili, “Solutions of nonlocal problems for one-dimensional vibration environment”, Matem. Model., 12:1 (2000), 94–103 (in Russian) | MR | Zbl

[11] V. B. Dmitriev, “Nonlocal problem with integral conditions for free equation”, Vestnik Samarskogo gosuniversiteta, Seriay estestvennyh nauk, 42:2 (2006), 15–27 (in Russian) | MR

[12] L. S. Pul'kina, “A mixed problem with an integral condition for the hyperbolic equation”, Mathem. Notes, 74:3 (2003), 435–445 | DOI | MR | Zbl

[13] J. W. Strutt Lord Rayleigh, Theory of Sound, v. II, 2-nd ed., MacMillan, London, 1896

[14] T. K. Yuldashev, “Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power”, Computational Mathem. and Mathem. Phyzics, 52:1 (2012), 112–123 | MR | Zbl

[15] T. K. Yuldashev, “On weak solvability of a mixed problem for a nonlinear pseudohyperbolic equation”, Zh. Mat. Obcshestva Srednei Volgi, 14:4 (2012), 91–94 (in Russian)

[16] T. K. Yuldashev, “On solvability of a mixed value problem for a nonlinear pseudohyperbolic equation of fifth order”, Abstract book of IV Russian-Armyan Conference on Mathematical Physics, Complex Analysis and Related Topics, Siberian Federal Univers., Krasnoyarsk, 2012, 88–91