Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2014_7_2_a13, author = {Tursun K. Yuldashev}, title = {On differentiability of the solution of the mixed boundary value problem for a~nonlinear pseudohyperbolic equation with respect to small parameters}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {260--271}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a13/} }
TY - JOUR AU - Tursun K. Yuldashev TI - On differentiability of the solution of the mixed boundary value problem for a~nonlinear pseudohyperbolic equation with respect to small parameters JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 260 EP - 271 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a13/ LA - en ID - JSFU_2014_7_2_a13 ER -
%0 Journal Article %A Tursun K. Yuldashev %T On differentiability of the solution of the mixed boundary value problem for a~nonlinear pseudohyperbolic equation with respect to small parameters %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2014 %P 260-271 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a13/ %G en %F JSFU_2014_7_2_a13
Tursun K. Yuldashev. On differentiability of the solution of the mixed boundary value problem for a~nonlinear pseudohyperbolic equation with respect to small parameters. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 260-271. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a13/
[1] V. M. Alexandrov, E. V. Kovalenko, Continuum mechanics problems with mixed boundary conditions, Nauka, Moscow, 1986 (in Russian)
[2] S. D. Algazin, I. A. Kiyko, Flutter of plates and shells, Nauka, Moscow, 2006 (in Russian)
[3] P. P. Kiryakov, S. I. Senashov, A. N. Yakhno, Application of symmetries and conservation laws to solving differential equations, Izdatel'stvo SO RAN, Novosibirsk, 2001 (in Russian)
[4] S. I. Senashov, “Conservation laws of plasticity equations”, Dokl. AN SSSR, 320:3 (1991), 606–608 (in Russian) | MR | Zbl
[5] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian)
[6] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Nauka, Moscow, 1988 (in Russian) | MR
[7] S. I. Pohozhaev, “On Prior estimates and gradient catastrophes smooth solutions of hyperbolic systems of conservation laws”, Trudy MI RAN, 243, 2003, 257–288 (in Russian) | MR | Zbl
[8] A. A. Samarskiy, “On some problems of contemporary theory of differential equations”, Diifferentsial'nye uravneniya, 16:11 (1980), 1221–1228 (in Russian)
[9] A. M. Nakhushev, “An approximation method for solving boundary value problems for differential equations with applications to the dynamics of soil moisture and groundwater”, Diifferentsial'nye uravneniya, 18:1 (1982), 72–81 (in Russian) | MR | Zbl
[10] D. G. Gordesiani, G. A. Avalishvili, “Solutions of nonlocal problems for one-dimensional vibration environment”, Matem. Model., 12:1 (2000), 94–103 (in Russian) | MR | Zbl
[11] V. B. Dmitriev, “Nonlocal problem with integral conditions for free equation”, Vestnik Samarskogo gosuniversiteta, Seriay estestvennyh nauk, 42:2 (2006), 15–27 (in Russian) | MR
[12] L. S. Pul'kina, “A mixed problem with an integral condition for the hyperbolic equation”, Mathem. Notes, 74:3 (2003), 435–445 | DOI | MR | Zbl
[13] J. W. Strutt Lord Rayleigh, Theory of Sound, v. II, 2-nd ed., MacMillan, London, 1896
[14] T. K. Yuldashev, “Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power”, Computational Mathem. and Mathem. Phyzics, 52:1 (2012), 112–123 | MR | Zbl
[15] T. K. Yuldashev, “On weak solvability of a mixed problem for a nonlinear pseudohyperbolic equation”, Zh. Mat. Obcshestva Srednei Volgi, 14:4 (2012), 91–94 (in Russian)
[16] T. K. Yuldashev, “On solvability of a mixed value problem for a nonlinear pseudohyperbolic equation of fifth order”, Abstract book of IV Russian-Armyan Conference on Mathematical Physics, Complex Analysis and Related Topics, Siberian Federal Univers., Krasnoyarsk, 2012, 88–91