Special version of the collocation method for a~class of integral equations of the third kind based on Hermite--Fejer interpolation polynomials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 254-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this document we propose and justify special direct method for the approximate solution of equations of the third kind in the space of distributions.
Keywords: third-kind integral equation, approximate solution, space of distributions, theoretical substantiation.
@article{JSFU_2014_7_2_a12,
     author = {Svetlana A. Solov'eva},
     title = {Special version of the collocation method for a~class of integral equations of the third kind based on {Hermite--Fejer} interpolation polynomials},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {254--259},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a12/}
}
TY  - JOUR
AU  - Svetlana A. Solov'eva
TI  - Special version of the collocation method for a~class of integral equations of the third kind based on Hermite--Fejer interpolation polynomials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 254
EP  - 259
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a12/
LA  - en
ID  - JSFU_2014_7_2_a12
ER  - 
%0 Journal Article
%A Svetlana A. Solov'eva
%T Special version of the collocation method for a~class of integral equations of the third kind based on Hermite--Fejer interpolation polynomials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 254-259
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a12/
%G en
%F JSFU_2014_7_2_a12
Svetlana A. Solov'eva. Special version of the collocation method for a~class of integral equations of the third kind based on Hermite--Fejer interpolation polynomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 254-259. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a12/

[1] G. R. Bart, R. L. Warnock, “Linear Integral Equations of the Third Kind”, SIAM J. Math. Anal., 4:4 (1973), 609–622 | DOI | MR | Zbl

[2] K. M. Case, P. F. Zweifel, Linear Transport Theory, Addison-Wesley, 1967 | MR | Zbl

[3] N. S. Gabbasov, “On the Theory of Linear Integral Equations of the Third Kind”, Differential Equations, 32:9 (1996), 1192–1201 | MR | Zbl

[4] N. S. Gabbasov, Solution Methods for the Fredholm Integral Equations in Spaces of Distributions, Kazan. Univ., Kazan, 2006 (in Russian)

[5] S. A. Solov'eva, About Direct Methods of Solution of Integral Equations of the Third Sort in Space of Generalized Functions, Candidate's Dissertation in Mathematics and Physics, Kazan. Univ., Kazan, 2007 (in Russian)

[6] N. S. Gabbasov, S. A. Solov'eva, “Generalized Moment Method for a Class of Integral Equations of the Third Kind”, Differential Equations, 42:10 (2006), 1490–1498 | DOI | MR | Zbl

[7] N. S. Gabbasov, S. A. Solov'eva, “A Spline Method for the Solution of Integral Equations of the Third Kind”, Russian Mathematics, 51:3 (2007), 1–8 | DOI | MR | Zbl

[8] N. S. Gabbasov, S. A. Solov'eva, “Special Versions of the Collocation Method for a Class of Integral Equations of the Third Kind”, Russian Mathematics, 56:8 (2012), 22–27 | DOI | MR | Zbl

[9] I. P. Natanson, Constructive Theory of Functions, Gostekhizdat, Leningrad, 1949 (in Russian) | MR

[10] I. Petersen, “On the Convergence of Approximate Methods of Interpolation Type for Ordinary Differential Equations”, Izv. Akad. Nauk EstSSR. Ser. Fiz.-Matem. i Tekh. Nauk, 1 (1961), 3–12

[11] B. G. Gabdulkhaev, Optimal Approximations of Solutions of Linear Problems, Kazan. Univ., Kazan, 1980 (in Russian) | MR

[12] S. Presdorf, “Singular Integral Equation with a Symbol Vanishing at a Finite Number of Points”, Mathem. Studies, 7:1 (1972), 116–132 | MR | Zbl