Special version of the collocation method for a class of integral equations of the third kind based on Hermite–Fejer interpolation polynomials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 254-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this document we propose and justify special direct method for the approximate solution of equations of the third kind in the space of distributions.
Keywords: third-kind integral equation, approximate solution, space of distributions, theoretical substantiation.
@article{JSFU_2014_7_2_a12,
     author = {Svetlana A. Solov'eva},
     title = {Special version of the collocation method for a~class of integral equations of the third kind based on {Hermite{\textendash}Fejer} interpolation polynomials},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {254--259},
     year = {2014},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a12/}
}
TY  - JOUR
AU  - Svetlana A. Solov'eva
TI  - Special version of the collocation method for a class of integral equations of the third kind based on Hermite–Fejer interpolation polynomials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 254
EP  - 259
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a12/
LA  - en
ID  - JSFU_2014_7_2_a12
ER  - 
%0 Journal Article
%A Svetlana A. Solov'eva
%T Special version of the collocation method for a class of integral equations of the third kind based on Hermite–Fejer interpolation polynomials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 254-259
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a12/
%G en
%F JSFU_2014_7_2_a12
Svetlana A. Solov'eva. Special version of the collocation method for a class of integral equations of the third kind based on Hermite–Fejer interpolation polynomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 254-259. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a12/

[1] G. R. Bart, R. L. Warnock, “Linear Integral Equations of the Third Kind”, SIAM J. Math. Anal., 4:4 (1973), 609–622 | DOI | MR | Zbl

[2] K. M. Case, P. F. Zweifel, Linear Transport Theory, Addison-Wesley, 1967 | MR | Zbl

[3] N. S. Gabbasov, “On the Theory of Linear Integral Equations of the Third Kind”, Differential Equations, 32:9 (1996), 1192–1201 | MR | Zbl

[4] N. S. Gabbasov, Solution Methods for the Fredholm Integral Equations in Spaces of Distributions, Kazan. Univ., Kazan, 2006 (in Russian)

[5] S. A. Solov'eva, About Direct Methods of Solution of Integral Equations of the Third Sort in Space of Generalized Functions, Candidate's Dissertation in Mathematics and Physics, Kazan. Univ., Kazan, 2007 (in Russian)

[6] N. S. Gabbasov, S. A. Solov'eva, “Generalized Moment Method for a Class of Integral Equations of the Third Kind”, Differential Equations, 42:10 (2006), 1490–1498 | DOI | MR | Zbl

[7] N. S. Gabbasov, S. A. Solov'eva, “A Spline Method for the Solution of Integral Equations of the Third Kind”, Russian Mathematics, 51:3 (2007), 1–8 | DOI | MR | Zbl

[8] N. S. Gabbasov, S. A. Solov'eva, “Special Versions of the Collocation Method for a Class of Integral Equations of the Third Kind”, Russian Mathematics, 56:8 (2012), 22–27 | DOI | MR | Zbl

[9] I. P. Natanson, Constructive Theory of Functions, Gostekhizdat, Leningrad, 1949 (in Russian) | MR

[10] I. Petersen, “On the Convergence of Approximate Methods of Interpolation Type for Ordinary Differential Equations”, Izv. Akad. Nauk EstSSR. Ser. Fiz.-Matem. i Tekh. Nauk, 1 (1961), 3–12

[11] B. G. Gabdulkhaev, Optimal Approximations of Solutions of Linear Problems, Kazan. Univ., Kazan, 1980 (in Russian) | MR

[12] S. Presdorf, “Singular Integral Equation with a Symbol Vanishing at a Finite Number of Points”, Mathem. Studies, 7:1 (1972), 116–132 | MR | Zbl