On interpolation in the class of analytic functions in the unit disk with power growth of the Nevanlinna characteristic
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 235-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we solve the interpolation problem for the class of analytic functions in the unit disk with power growth of the Nevanlinna characteristic under the condition that interpolation nodes are contained in a finite union of Stolz angles.
Keywords: holomorphic functions, the Nevanlinna characteristic, Stolz angles.
Mots-clés : interpolation
@article{JSFU_2014_7_2_a10,
     author = {Faizo A. Shamoyan and Eugenia G. Rodikova},
     title = {On interpolation in the class of analytic functions in the unit disk with power growth of the {Nevanlinna} characteristic},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {235--243},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a10/}
}
TY  - JOUR
AU  - Faizo A. Shamoyan
AU  - Eugenia G. Rodikova
TI  - On interpolation in the class of analytic functions in the unit disk with power growth of the Nevanlinna characteristic
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 235
EP  - 243
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a10/
LA  - en
ID  - JSFU_2014_7_2_a10
ER  - 
%0 Journal Article
%A Faizo A. Shamoyan
%A Eugenia G. Rodikova
%T On interpolation in the class of analytic functions in the unit disk with power growth of the Nevanlinna characteristic
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 235-243
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a10/
%G en
%F JSFU_2014_7_2_a10
Faizo A. Shamoyan; Eugenia G. Rodikova. On interpolation in the class of analytic functions in the unit disk with power growth of the Nevanlinna characteristic. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 235-243. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a10/

[1] R. Nevanlinna, Eindeutige analytische Funktionen, 2nd ed., Springer-Verlag, 1953 | MR | Zbl

[2] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[3] S. A. Vinogradov, V. P. Havin, “Free interpolation in $H^\infty$ and in some other classes of functions. I”, Zap. Nauchn. Sem. LOMI, 47, 1974, 15–54 (in Russian) | MR | Zbl

[4] A. G. Naftalevic, “On interpolation by functions of bounded characteristic”, Vilniaus Valst. Univ. Mokslu Darbai. Mat. Fiz. Chem. Mokslu Ser., 5 (1956), 5–27 (in Russian) | MR

[5] A. Hartmann, X. Massaneda, A. Nicolau, P. Thomas, “Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants”, J. Funct. Anal., 217 (2004), 1–37 | DOI | MR | Zbl

[6] J. Shapiro, A. Shields, “On some interpolation problems for analytic functions”, Amer. J. Math., 83 (1961), 513–532 | DOI | MR | Zbl

[7] K. Seip, Interpolation and sampling in spaces of analytic functions, University Lecture Series, 33, Amer. Math. Soc., Providence, 2004 | MR | Zbl

[8] M. M. Djrbashian, “On the representation problem of analytic functions”, Soob. Inst. Mat. i Mekh. AN ArmSSR, 2 (1948), 3–40 (in Russian)

[9] I. I. Privalov, Boundary properties of analytic functions, Gostekhizdat, Moscow–Leningrad, 1950 (in Russian) | MR

[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970 | MR

[11] F. A. Shamoyan, E. N. Shubabko, “Parametrical representations of some classes of holomorphic functions in the disk”, Operator Theory: Advances and Applications, 113, Birkhauser Verlag, Basel, 2000, 331–338 | MR | Zbl

[12] P. Koosis, Introduction to $H_p$ Spaces, Cambridge University Press, 1998 | MR | Zbl

[13] F. A. Shamoyan, “M. M. Dzhrbashyan's factorization theorem and characterization of zeros of functions analytic in the disk with a majorant of bounded growth”, Izv. Akad. Nauk ArmSSR, Matematika, 13:5–6 (1978), 405–422 (in Russian) | MR | Zbl

[14] F. A. Shamoyan, E. N. Shubabko, Introduction to the theory of weighted $L^p$-classes of meromorphic functions, Bryanskiy Gosudarstven. Universitet, Bryansk, 2009 (in Russian)