On solvability of the Cauchy problem for a loaded system
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 155-161
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we investigated the Cauchy problem for a loaded Burgers-type system. Example of mathematical physics inverse problem leading to problem being investigated is given. Sufficient conditions for existence of solution in continuously differentiable class are obtained.
Keywords:
Cauchy problem, inverse problem, Burgers' equation, non-linear system, weak approximation method.
@article{JSFU_2014_7_2_a1,
author = {Yuriy Ya. Belov and Kirill V. Korshun},
title = {On solvability of the {Cauchy} problem for a~loaded system},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {155--161},
year = {2014},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a1/}
}
TY - JOUR AU - Yuriy Ya. Belov AU - Kirill V. Korshun TI - On solvability of the Cauchy problem for a loaded system JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 155 EP - 161 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a1/ LA - en ID - JSFU_2014_7_2_a1 ER -
Yuriy Ya. Belov; Kirill V. Korshun. On solvability of the Cauchy problem for a loaded system. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 155-161. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a1/
[1] V. G. Romanov, Inverse problems of mathematical physics, V. S. P. Intl Science, 1986 | MR
[2] A. I. Kozhanov, “Nonlinear loaded equations and inverse problems”, Computational Mathematics and Mathematical Physics, 44:4 (2004), 657–675 | MR | Zbl
[3] I. V. Frolenkov, Yu. Ya. Belov, “On existence of solution to loaded two-dimensional parabloic equations class with Cauchy data”, Nonclassic mathematical physics equations, Article collection, 2012, 262–279 (in Russian)
[4] Yu. Ya. Belov, S. A. Cantor, Weak approximation method, Krasnoyarskii gosudarstvennyi universitet, 1999 (in Russian)