On solvability of the Cauchy problem for a~loaded system
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 155-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we investigated the Cauchy problem for a loaded Burgers-type system. Example of mathematical physics inverse problem leading to problem being investigated is given. Sufficient conditions for existence of solution in continuously differentiable class are obtained.
Keywords: Cauchy problem, inverse problem, Burgers' equation, non-linear system, weak approximation method.
@article{JSFU_2014_7_2_a1,
     author = {Yuriy Ya. Belov and Kirill V. Korshun},
     title = {On solvability of the {Cauchy} problem for a~loaded system},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {155--161},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a1/}
}
TY  - JOUR
AU  - Yuriy Ya. Belov
AU  - Kirill V. Korshun
TI  - On solvability of the Cauchy problem for a~loaded system
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 155
EP  - 161
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a1/
LA  - en
ID  - JSFU_2014_7_2_a1
ER  - 
%0 Journal Article
%A Yuriy Ya. Belov
%A Kirill V. Korshun
%T On solvability of the Cauchy problem for a~loaded system
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 155-161
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a1/
%G en
%F JSFU_2014_7_2_a1
Yuriy Ya. Belov; Kirill V. Korshun. On solvability of the Cauchy problem for a~loaded system. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 2, pp. 155-161. http://geodesic.mathdoc.fr/item/JSFU_2014_7_2_a1/

[1] V. G. Romanov, Inverse problems of mathematical physics, V. S. P. Intl Science, 1986 | MR

[2] A. I. Kozhanov, “Nonlinear loaded equations and inverse problems”, Computational Mathematics and Mathematical Physics, 44:4 (2004), 657–675 | MR | Zbl

[3] I. V. Frolenkov, Yu. Ya. Belov, “On existence of solution to loaded two-dimensional parabloic equations class with Cauchy data”, Nonclassic mathematical physics equations, Article collection, 2012, 262–279 (in Russian)

[4] Yu. Ya. Belov, S. A. Cantor, Weak approximation method, Krasnoyarskii gosudarstvennyi universitet, 1999 (in Russian)