On one condition for the decomposition of an entire function into an infinite product
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is proof a decomposition of entire function of finite order of growth with given zero set into the infinite product.
Keywords: entire function, finite order of growth, infinite product.
@article{JSFU_2014_7_1_a8,
     author = {Evgenyia K. Myschkina},
     title = {On one condition for the decomposition of an entire function into an infinite product},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a8/}
}
TY  - JOUR
AU  - Evgenyia K. Myschkina
TI  - On one condition for the decomposition of an entire function into an infinite product
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 91
EP  - 94
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a8/
LA  - en
ID  - JSFU_2014_7_1_a8
ER  - 
%0 Journal Article
%A Evgenyia K. Myschkina
%T On one condition for the decomposition of an entire function into an infinite product
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 91-94
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a8/
%G en
%F JSFU_2014_7_1_a8
Evgenyia K. Myschkina. On one condition for the decomposition of an entire function into an infinite product. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 91-94. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a8/

[1] P. Lelong, L. Gruman, Entire Functions of Several Complex Variables, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985 | MR

[2] L. I. Ronkin, Introduction to the theory of entire functions of several variables, Nauka, Moscow, 1971 (in Russian) | MR | Zbl

[3] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, 1939