Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and Weber potential
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 58-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lie group analysis of equations of an ideal fluid written in variables of trajectories and Weber's potential was conducted. It was shown that the use of volume conserving arbitrary Lagrangian coordinates is in fact an equivalent transformation for the equations. The defining Lie algebra equations for the initial velocity distribution were obtained. The basic Lie group and its extensions were found.
Keywords: equations of an ideal fluid, Lagrangian coordinates, defining equations.
Mots-clés : equivalent transformation
@article{JSFU_2014_7_1_a5,
     author = {Daria A. Krasnova},
     title = {Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and {Weber} potential},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {58--67},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a5/}
}
TY  - JOUR
AU  - Daria A. Krasnova
TI  - Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and Weber potential
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 58
EP  - 67
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a5/
LA  - en
ID  - JSFU_2014_7_1_a5
ER  - 
%0 Journal Article
%A Daria A. Krasnova
%T Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and Weber potential
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 58-67
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a5/
%G en
%F JSFU_2014_7_1_a5
Daria A. Krasnova. Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and Weber potential. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 58-67. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a5/

[1] V. K. Andreev, Stability of unsteady fluid flows with a freeborder, Nauka, Novosibirsk, 1992 (in Russian) | MR

[2] D. Serrin, Mathematical foundations of classical fluid mechanics, Izd. Fiz.-Mat. Lit., Moscow, 1963 (in Russian)

[3] L. V. Ovsyannikov, Group analysis of differential equations, Nauka, Moscow, 1978 (in Russian) | MR | Zbl