Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and Weber potential
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 58-67
Voir la notice de l'article provenant de la source Math-Net.Ru
Lie group analysis of equations of an ideal fluid written in variables of trajectories and Weber's potential was conducted. It was shown that the use of volume conserving arbitrary Lagrangian coordinates is in fact an equivalent transformation for the equations. The defining Lie algebra equations for the initial velocity distribution were obtained. The basic Lie group and its extensions were found.
Keywords:
equations of an ideal fluid, Lagrangian coordinates, defining equations.
Mots-clés : equivalent transformation
Mots-clés : equivalent transformation
@article{JSFU_2014_7_1_a5,
author = {Daria A. Krasnova},
title = {Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and {Weber} potential},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {58--67},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a5/}
}
TY - JOUR AU - Daria A. Krasnova TI - Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and Weber potential JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2014 SP - 58 EP - 67 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a5/ LA - en ID - JSFU_2014_7_1_a5 ER -
%0 Journal Article %A Daria A. Krasnova %T Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and Weber potential %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2014 %P 58-67 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a5/ %G en %F JSFU_2014_7_1_a5
Daria A. Krasnova. Group analysis of three-dimensional equations of an ideal fluid in terms of trajectories and Weber potential. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 58-67. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a5/