Groups satisfying the minimal condition for non-abelian non-normal subgroups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 22-34

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we establish that in a great many large and extremely large classes of groups, the non-abelian groups satisfying the mentioned condition are exactly the non-abelian Chernikov groups and the non-abelian solvable groups with normal non-abelian subgroups.
Keywords: non-normal subgroups, non-abelian, Artinian, Dedekind, Shunkov, periodic groups, weakly, binary, primitive, locally graded groups.
Mots-clés : minimal conditions, Chernikov, solvable
@article{JSFU_2014_7_1_a2,
     author = {Nikolai S. Chernikov},
     title = {Groups satisfying the minimal condition for non-abelian non-normal subgroups},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {22--34},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a2/}
}
TY  - JOUR
AU  - Nikolai S. Chernikov
TI  - Groups satisfying the minimal condition for non-abelian non-normal subgroups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2014
SP  - 22
EP  - 34
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a2/
LA  - en
ID  - JSFU_2014_7_1_a2
ER  - 
%0 Journal Article
%A Nikolai S. Chernikov
%T Groups satisfying the minimal condition for non-abelian non-normal subgroups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2014
%P 22-34
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a2/
%G en
%F JSFU_2014_7_1_a2
Nikolai S. Chernikov. Groups satisfying the minimal condition for non-abelian non-normal subgroups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 7 (2014) no. 1, pp. 22-34. http://geodesic.mathdoc.fr/item/JSFU_2014_7_1_a2/